Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

John Forth, inżynier z Uniwersytetu w Leeds, wynalazł bloczki budowlane, które składają się w całości ze śmieci.

Bitublocks (bitubloki) produkuje się z odzyskiwanego szkła, osadów ściekowych, popiołów pozostających po spalaniu odpadów oraz zbieranych z elektrowni, a także produktów ubocznych oczyszczania metali.

Forth ma nadzieję, że jego wynalazek zrewolucjonizuje przemysł budowlany. Do wyprodukowania bitubloków zużywa się mniej energii niż do uzyskania tradycyjnych bloczków betonowych, a są one ok. 6 razy bardziej wytrzymałe [...].

Substancją wiążącą odpady w bloczkach jest bitumin (używany skądinąd do utwardzania nawierzchni dróg). Powstająca w ten sposób masa jest umieszczana w formach, a podczas podgrzania bitumin zastyga podobnie jak beton. Zastosowanie bituminu, a nie cementu czy gliny, pozwala zwiększyć proporcję zużywanych do produkcji śmieci.

Forth zamierza w przyszłości popracować nad materiałem budowlanym ze zużytego oleju roślinnego, czyli tzw. wegebloczkami (Vegeblocks).

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Wiele starożytnych rzymskich konstrukcji wykonanych jest z betonu, w tym wzniesiony 1900 lat temu Panteon, z największą na świecie niewzmacnianą betonową kopułą. Niektóre z akweduktów są wciąż wykorzystywane. Tymczasem współczesne konstrukcje betonowe rozsypują się po kilku dekadach. Naukowcy od dawna próbują rozszyfrować tajemnice rzymskich inżynierów, badając m.in. falochron, który przetrwał 2000 lat oddziaływania słonej wody. Przez wiele lat sądzono, że rzymski beton jest tak wytrzymały dzięki popiołom wulkanicznym. Okazało się jednak, że posiada on jeszcze jeden – lekceważony dotychczas – składnik.
      Naukowcy z MIT, Uniwersytetu Harvarda oraz laboratoriów z Włoch i Szwajcarii przyjrzeli się milimetrowej wielkości fragmentom wapienia, które powszechnie są spotykane w rzymskim betonie. Od kiedy tylko zacząłem pracować z rzymskim betonem, te drobinki mnie fascynowały. Nie występują one we współczesnych betonach, dlaczego więc znajdują się w rzymskich?, mówi profesor Admir Masic z MIT.
      Dotychczas sądzono, że obecność tych ziaren to dowód na niedokładne mieszanie materiału przez Rzymian lub też na dodawanie przez nich słabej jakości materiałów. Takie wyjaśnienia nie są jednak przekonujące. Dlaczego Rzymianie, którzy tak dbali o uzyskanie wysokiej jakości materiału budowlanego i przez wieku udoskonalali jego recepturę, mieliby niedbale wszystko ze sobą mieszać?
      Naukowcy od dawna sądzą, że gdy Rzymianie dodawali wapno do swojego betonu, najpierw łączyli je z wodą, uzyskując – w procesie gaszenia wapna – konsystencję pasty. Jednak w wyniku takiego procesu nie powstawałyby drobinki.
      Gdy teraz uczeni szczegółowo zbadali lekceważone dotychczas drobinki zauważyli, że rzeczywiście jest to wapno, ale zostało ono poddane działaniu wysokich temperatur, których można spodziewać się po wykorzystaniu tlenku wapnia zamiast, lub obok, wapna gaszonego. Autorzy najnowszych badań uważają, że to mieszanie na gorąco nadało rzymskiemu betonowi jego wyjątkową wytrzymałość. Takie mieszanie ma dwie zalety. Po pierwsze, gdy cały beton jest podgrzewany do wysokich temperatur, zachodzą procesy chemiczne, które nie mają miejsca, gdy używa się tylko wapna gaszonego, w wysokich temperaturach powstają związki, jakie nie pojawiają się w innych procesach. Po drugie, wysokie temperatury skracają czas wiązania, gdyż wszystkie reakcje ulegają przyspieszeniu, zatem można znacznie szybciej wznosić budowle, wyjaśnia Masic.
      Podczas mieszania na gorąco, drobinki skał wapiennych zmieniają swoją strukturę tak, że powstaje reaktywne, łatwo rozdzielające się źródło wapnia. Gdy w tak uzyskanym betonie dochodzi z czasem do pęknięć, w które wnika woda, wspomniane drobinki reagują z nią, tworząc nasycony wapnem roztwór. Ten szybko rekrystalizuje lub wchodzi w reakcje z popiołami wulkanicznymi wypełniając pęknięcie i wzmacniając całość. Reakcje takie zachodzą automatycznie i spontanicznie, dzięki czemu pęknięcia w betonie są naprawiane, zanim się rozprzestrzenią.
      Naukowcy, by sprawdzić swoją hipotezę, stworzyli próbki mieszanych na gorąco betonów według receptury starożytnej i współczesnej. Następnie doprowadzili do ich popękania i przepuścili przez pęknięcia wodę. Po dwóch tygodniach beton, w którym zastosowano mikrodrobinki wapna, samodzielnie się naprawił i woda przestała płynąć przez szczeliny.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Badacze z Uniwersytetu Johnsa Hopkinsa odkryli, że na każdy 1 punkt procentowy zwiększenia powierzchni zabetonowanych – jak drogi, parkingi, budynki i inna infrastruktura – przypada 3,3-procentowe zwiększenie intensywności powodzi. Oznacza to, że jeśli w basenie danej rzeki zabetonowaną powierzchnię zwiększymy o 10%, to średnio przepływ wody w czasie zwiększy się tam o 33%.
      W ostatnim czasie doszło do znaczne zwiększenia intensywności powodzi w takich miastach jak Houston czy Ellicott City. Chcieliśmy lepiej zrozumieć, jak urbanizacja wpływa na zwiększenie przepływu wód powodziowych, mówi Annalise Blum z Johns Hopkins University i American Association for the Advancement of Science.
      Poprzednie badania tego typu wykorzystywały mniejsze zestawy danych, dotyczących pojedynczych cieków wodnych lub niewielkich grup cieków w określonym przedziale czasowym. Nie można było ich przełożyć na skalę całego kraju. Ponadto trudno było na ich podstawie wyizolować przyczynę i skutek, gdyż nie kontrolowano w nich efektywnie wpływu takich czynników jak klimat, zapory wodne czy sposób wykorzystywania terenu. Trudno było więc podać konkretne wartości pokazujące, w jaki sposób nieprzepuszczalna powierzchnia wpływa na powodzie.
      Blum we współpracy z profesorem Paulem Ferraro wykorzystali modele matematyczne, które rzadko są używane do badania powodzi. W badaniach środowiska naturalnego trudno jest oddzielić przyczynę od skutku. Na szczęście w ciągu ostatnich dekad na polu ekonomii i biostatystyki opracowano metody, które pozwalają na ich odróżnienie. Zastosowaliśmy te metody do badań hydrologicznych, w nadziei, że przyczyni się to do postępu w tej dziedzinie wiedzy i da planistom oraz polityko nowe narzędzia pomocne podczas rozwoju miast, stwierdza Ferrero.
      Naukowcy wykorzystali dane US Geological Survey z okresu 1974–2012, które dotyczyły ponad 2000 cieków wodnych. Dane zawierały informacje o przepływie wody. Informacje takie poddano analizie, w której uwzględniono też zmiany w obszarze powierzchni nieprzepuszczalnych w basenie każdego z cieków.
      Z analizy wynika, że wielkość powodzi, rozumiana jako maksymalny przepływ wody, zwiększa się o 3,3 punktu procentowego dla każdego wzrostu obszaru powierzchni nieprzepuszczalnych o 1 pp.
      "W związku z olbrzymią coroczną zmiennością przepływu wody trudno jest wydzielić skutki urbanizacji. Nam się to udało dzięki zastosowaniu olbrzymich zestawów danych zbieranych zarówno w czasie jak i w przestrzeni", wyjaśnia Blum.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Microsoft stworzył prototypowy system do przechowywania informacji w szkle. We współpracy z firmą Warner Bros. koncern zapisał oryginalny firm Superman z 1978 roku na kawałku szkła o wymiarach 75x75x2 milimetry. Prace nad zapisywaniem danych w szkle są prowadzone przez Microsoft Research i stanowią one część projektu, w ramach którego Microsoft opracowuje nowe technologie archiwizacji danych na potrzeby platformy Azure.
      Budujemy całkiem nowy system, poinformował dyrektor wykonawczy Microsoftu Satya Nadella podczas konferencji Ignite. W ramach Project Silica wykorzystywane jest standardowe szkło kwarcowe.
      Obecnie Warner Bros archiwizuje filmy przenosząc ich wersje cyfrowe na taśmę i dzieląc je na trzy kolory składowe. Monochromatyczne negatywy są bowiem bardziej odporne na upływ czasu niż filmy kolorowe. To kosztowny i długotrwały proces. Microsoft chce go uprościć i obniżyć jego koszty. Jeśli Project Silica okaże się skalowalny i efektywny ekonomicznie, to będzie czymś, co z chęcią zastosujemy. Jeśli dobrze sprawdzi się w naszym przypadku, sądzimy, że będzie też przydatny dla każdego, kto chce archiwizować dane, mówi Vicky Colf, dyrektor ds. technologicznych w Warner Bros.
      Microsoft wykorzystuje femtosekundowe lasery pracujące w podczerwieni do zapisu danych na „wokselach”, trójwymiarowych pikselach. Każdy z wokseli ma kształt odwróconej kropli, a zapis dokonywany jest poprzez nadawanie mi różnych wielkości i różnej orientacji. Na szkle o grubości 2 milimetrów można zapisać ponad 100 warstw wokseli. Odczyt odbywa się za pomocą kontrolowanego przez komputer mikroskopu, który wykorzystuje różne długości światła laserowego. Światło zostaje odbite od wokseli i jest przechwytywane przez kamerę. W zależności od orientacji wokseli, ich wielkości oraz warstwy do której należą, odczytywane są dane.
      Wybór szkła jako nośnika danych może dziwić, jednak to bardzo obiecujący materiał. Szkło może przetrwać tysiące lat. Na płytce o wymiarach 75x75x2 milimetry można zapisać ponad 75 gigabajtów danych i zostanie sporo miejsca na zapisanie informacji do korekcji błędów. Podczas testów szkło było zalewane wodą, poddawane działaniu pola magnetycznego, mikrofal, gotowane w wodzie, pieczone w temperaturze 260 stopni Celsjusza i rysowane za pomocą stalowych drapaków. Za każdym razem dane można było odczytać.
      Duża wytrzymałość szkła oznacza, że archiwa z cyfrowymi danymi będą mniej podatne na powodzie, pożary, trzęsienia ziemi, zaburzenia powodowane polem magnetycznym czy na wyłączenia prądu. Ponadto szkło zajmuje niewiele miejsca. Jego największą zaletą jest wytrzymałość. Prawdopodobnie zapisane w nim dane można będzie przechowywać przez ponad 1000 lat. Stosowane obecnie metody magnetycznego zapisu ulegają szybkiej degradacji w ciągu kilku lat, dlatego też archiwalne dane zapisane na dyskach są co jakiś czas przegrywane na kolejne urządzenia.
      Celem Project Silica nie jest stworzenie produktu dla konsumentów indywidualnych. Szklane systemy przechowywania danych mają być skierowane do firm chcących archiwizować duże ilości informacji. Nie próbujemy stworzyć czegoś, co będzie używane w domu. Pracujemy nad metodą archiwizacji w skali chmur obliczeniowych. Chcemy wyeliminować kosztowny cykl ciągłego przenoszenia i zapisywania danych. Chcemy mieć coś, co można będzie odłożyć na półkę na 50, 100 czy 1000 lat i zapomnieć o tym do czasu, aż będzie potrzebne, mówi Ant Rowstron, zastępca dyrektora laboratorium w Microsoft Research Cambridge.
       


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przed 300 milionami lat na terenie dzisiejszych północnych Chin wybuchł wulkan, którego popioły pogrzebały i przechowały do naszych czasów cały las. Paleobotanik profesor Hermann Pfefferkorn z University of Pennsylvannia wraz z kolegami z Chińskiej Akademii Nauk oraz uniwersytetów Shenyang i Yunnan opublikowali właśnie wyniki badań lasu.
      Skamieniałości znajdujące się w pobliżu miejscowości Wuda są niezwykłym świadectwem historii. Popioły wulkaniczne pokryły las w ciągu zaledwie kilku dni, zachowały go zatem w takim stanie, w jakim znajdował się w konkretnym momencie.
      Las jest wspaniale zachowany. Możemy znaleźć tam gałęzie z wciąż przyczepionymi liśćmi. Obok są kolejne gałęzie, a w pobliżu pień drzewa, z którego pochodzą - mówi Pfefferkorn. Niektóre z mniejszych drzew zachowały się w całości.
      Uczeni zbadali dotychczas trzy miejsca różne miejsca o łącznej powierzchni 1000 metrów kwadratowych. To wystarczająco dużo, by dość dokładnie określić ekologię lasu.
      Wiek popiołu oszacowano na 298 milionów lat, zatem pochodzi on z początku permu. W tym czasie płyty kontynentalne powoli formowały Pangeę. Ameryka Północna i Europa były jednym kontynentem, a dzisiejsze Chiny znajdowały się na dwóch mniejszych kontynentach. Wszystkie znajdowały się w okolicach równika, panował na nich zatem klimat tropikalny. Klimat całego globu był podobny do współczesnego, co jest szczególnie interesujące, gdyż jego badanie może zrozumieć zachodzące obecnie zmiany.
      Naukowcy zidentyfikowali sześć grup drzew. Większość stanowiły niskie rośliny, jednak były wśród nich również wymarłe już Sigilaria i Cordaites, dorastające do ponad 30 metrów. Znaleziono też zachowane niemal w całości rośliny z rzędu Noeggerathiales.
      Badania zespołu Pfefferkorna są pod kilkoma względami pionierskie. To pierwsza tego typu rekonstrukcja lasu w Azji, pierwszy znany las z tego okresu, który utworzył torfowisko oraz pierwszy las, w którego niektórych obszarach dominowały Noeggerathiales - mówi uczony.
    • przez KopalniaWiedzy.pl
      W przyszłości postęp technologiczny może doprowadzić do powstania mikroukładów zdolnych do wykrywania setek chorób. Urządzenia takie mogłoby np. identyfikować pojedyncze komórki nowotworowe we krwi.
      Jednak produkcja układów typu lab-on-a-chip jest trudna z technicznego punktu widzenia, czasochłonna i niezwykle kosztowna. Obecnie nanoczujniki wykonuje się za pomocą litografii elektronowej. To bardzo powolna metoda. Stworzenie czujników na powierzchni 6 milimetrów kwadratowych zajmuje wiele godzin. Jako że za samo wynajęcie maszyny do litografii trzeba zapłacić 200 USD za godzinę, takie czujniki kosztowałyby ponad 600 dolarów za sztukę.
      Nikt nie chce, by układy były tak drogie. Naukowcy szukają czegoś tańszego. To wyklucza wiele technik produkcji - mówi profesor Nicholas Fang z MIT-u, twórca prostej, precyzyjnej i taniej techniki produkcji czujników.
      Uczony wraz z zespołem wykorzystali technologię podobną do litografii, w której wykorzystuje się polimerowe „pieczątki". Najpierw polimer nakłada się pod ciśnieniem na wzorzec, a następnie poddaje się go działaniu światła ultrafioletowego. Polimer twardnieje. Później zostaje zdjęty ze wzorca i wypełniony metalem. Polimer jest następnie usuwamy, dzięki czemu otrzymujemy metalowy wzorzec. Technika ta jest tania, jednak nieprecyzyjna. Polimer może się nieco odkształcać, dając kopie odbiegające od oryginału.
      Fang postanowił zastąpić polimer szkłem. Myślimy o szkle jako o czymś bardzo delikatnym, szczególnie gdy jest roztopione. Jest ono w tym stanie bardzo płynni, miękkie i może szybko przyjmować dokładny kształt wzorca. Niezwykłe jest to, że tak samo działa ono w bardzo małej skali - stwierdził uczony.
      Naukowcy zaczęli szukać idealnego kandydata i stwierdzili, że ich potrzeby najlepiej zaspokoi szkło superjonowe. To materiał zawierający jony, które po przyłożeniu napięcia można łatwo aktywować.
      Uczeni napełnili niewielką strzykawkę takim szkłem, a następnie podgrzali igłę, by je roztopić. Później wycisnęli szkło na wzorzec. Gdy szkło stwardniało uzyskali szklaną kopię, którą nałożyli na srebrne podłoże i poddali działaniu 90 miliwoltów. Na srebrze powstał wytrawiony wzór odpowiadający kształtem szklanej kopii.
      Profesor S. V. Sreenivasan z University of Texas mówi, że nowa technika jest bardzo obiecująca, jednak jej twórcy muszą najpierw wykazać, iż można ją wykorzystać przy masowej produkcji. To oznacza udowodnienie, że szklany wzór może być używany wielokrotnie.
      Fang przyznaje, że jego technika jest wciąż dość kosztowna. Ciągle bowiem wymaga stworzenia matrycy-matki, a więc wykorzystania drogiego procesu litograficznego. Zauważa jednak, że wystarczy jedna taka matryca i jedna szklana „pieczątka". Dzięki niej można wykonać dziesiątki tysięcy niemal identycznych czujników. To fascynujące udoskonalenie już istniejących technik - mówi uczony.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...