Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Aby umieć odróżnić bukiet zapachowy i smakowy uzyskiwany przez zastosowanie winogron z różnych szczepów, np. pionot noir i cabernet sauvignon, wcale nie trzeba się zapisywać na kursy dla somelierów. Wystarczy sobie nalać parę kieliszków i wąchać oraz próbować. Dość szybko mózg pomoże całkiem zwyczajnej osobie stać się początkującym enologiem, czyli znawcą win.

Studium naukowców z Northwestern University pokazało, że mózg uczy się odróżniać podobne zapachy poprzez bierne zdobywanie doświadczenia. Rzuciło to nieco światła na proces, za pośrednictwem którego od momentu narodzin zdobywamy umiejętność rozpoznawania tysięcy woni. Eksperyment Amerykanów po raz pierwszy ujawnił, jak i gdzie mózg modyfikuje oraz uaktualnia informacje na temat zapachów.

Połowa badanych przez 3 minuty wdychała zapach miętowy, druga połowa kwiatowy. Po okresie wydłużonej ekspozycji zapachowej wolontariusze stawali się ekspertami albo w zakresie mięty, albo w zakresie kwiatów (w zależności o tego, jaką woń im prezentowano). Gdy potem członkowie pierwszej grupy stykali się z jakimś miętowym zapachem, potrafili lepiej różnicować podobne wonie z całej gamy. Nie inaczej było w przypadku osób z grupy kwiatowej. Innymi słowy: badani wystawieni na działanie jednego zapachu miętowego stawali się ekspertami w dziedzinie innych miętowych woni. Testy wykazały, że umiejętności te utrzymywały się przez co najmniej 24 godziny (Neuron).

Kiedy przez dłuższy czas masz kontakt z jednym zapachem, stajesz się ekspertem w zakresie woni należących do tej samej źródłowej kategorii — zauważa Jay Gottfried, profesor nadzwyczajny neurologii.

Chcąc zmierzyć aktywność mózgu wolontariuszy w czasie eksperymentu, badacze posłużyli się rezonansem magnetycznym (MRI). Zobaczyli, że przedłużona ekspozycja zapachowa silniej aktywowała korę okołooczodołową (region związany z powonieniem, emocjami oraz motywacją). Pokrywało się to z poprawą umiejętności odróżniania podobnych zapachów.

Wcześniej nikt nie wiedział, która część mózgu odpowiada za tego typu uczenie. My odkryliśmy, że nasilenie reakcji w obrębie kory okołooczodołowej pozwala przewidzieć, jak dobrym ekspertem zapachowym może się stać wskutek biernego uczenia dana osoba — tłumaczy Wen Li, szefowa badań. Informacje o zapachu nie są statyczne ani sztywno powiązane z jakimiś obszarami korowymi. Przeciwnie: są wysoce podatne na zmianę i mogą się nagle zmienić pod wpływem doświadczenia zmysłowego. Tę "giętkość" nazywa się plastycznością neuronalną.

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Po raz pierwszy zidentyfikowano ślady wina pitego w Troi. Analizy chemiczne charakterystycznych pucharów depata amphikypella (l. poj. depas amphikypellon) wykazały zarówno ślady wina, jak i dowiodły, że napojem tym cieszyły się wszystkie klasy społeczne legendarnego miasta. Odkrycie, dokonane przez ekspertów z Uniwersytetów w Tybindze, Bonn i Jenie, zostało opisane na łamach American Journal of Archaeology.
      Odkrywca Troi, Henryk Schliemann, znalazł na miejscu wykopalisk setki złotych i srebrnych naczyń. Jednak tym, co przykuwało jego szczególną uwagę i co przekonało go, że trafił na miasto opisane przez Homera, były gliniane naczynia. To opisane w „Iliadzie”, charakterystyczne dla epoki brązu puchary o dwóch uszach.

      Obecnie, dzięki licznym wykopaliskom, archeolodzy dobrze znają ten rodzaj naczyń. Depata amphikypella togliniane puchary o wysokości od 12 do 40 centymetrów, wyposażone w dwoje uszu, zwężające się du dołowi. W samej tylko Troi znaleziono ich ponad 100, datowanych na lata 2500–2000 p.n.e. Archeolodzy trafiają na nie od regionu Morza Egejskiego, przez Azję Mniejszą po Mezopotamię. Każde mieściło od 0,25 do 1 litra wina. Schliemann, na podstawie Homera, założył, że naczynia takie były używane podczas różnego rodzaju ceremonii.
      Znaleziska wydawały się potwierdzać relację Homera i założenia Schliemanna. Depata znajdowane były w świątyniach, pałacach i grobach. Wywnioskowano stąd, że były specjalnymi naczyniami, używanymi przy specjalnych okazjach przez elity. Ze źródeł pisanych wiemy też, że w tym czasie wino uważane było za kosztowny luksusowy napój, który trzeba było sprowadzać. Stąd też przypuszczenie, że jedynie elity miały do niego dostęp.
      Takie przypuszczenie może być rzeczywiście prawdziwe dla terenów w głębi Azji Mniejszej. Jednak wiele regionów położonych jest w miejscach, gdzie uprawa winorośli była rozpowszechniona.
      Naukowcy z Uniwersytetu w Tybindze, postanowili sprawdzić, czy rzeczywiście depata były używane do picia wina i czy ktoś inny poza elitami Troi miał do niego dostęp. W uniwersyteckich zbiorach znajduje się jeden kompletny depas znaleziony przez Schliemanna i fragmenty dwóch innych. Uczeni pobrali 2 gramy próbek z tych fragmentów, podgrzali je do temperatury 380 stopni i przeanalizowali uzyskany gaz. Badania metodami chromatografii gazowej i spektrometrii mas wykazały obecność kwasu bursztynowego oraz pirogronowego. Mogły one znaleźć się w naczyniu wyłącznie wskutek wlania tam wina. Możemy z całą pewnością stwierdzić, że w depata pito wino, a nie sok winogronowy, mówi Maxime Rageot z Uniwersytetu w Bonn, który prowadził analizy. Do rozstrzygnięcia pozostała więc kwestia dostępności wina dla różnych klas trojańskiego społeczeństwa.
      Uczeni przeprowadzili więc podobną analizę dwóch zwykłych kubków, jakie setkami są znajdowane w Troi poza miejscem zamieszkania elity. Również i one zawierały pozostałości po winie.
      Takie pozornie drobne odkrycia mogą sporo zmieniać w naszej wiedzy o przyszłości. Okazuje się bowiem, że w III tysiącleciu p.n.e. – przynajmniej w Troi – wino nie było wyłącznie napojem elity, a dostęp do niego miały wszystkie klasy społeczne. A depata znajdowane poza miejscami, gdzie mieszkała elita, pokazują, że były to dość popularne naczynia w tym czasie. Do rozstrzygnięcia pozostaje pytanie, czy Troja była wyjątkiem, czy też w innych miejscach Anatolii wino było równie dostępne.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Mózg chroniony jest przez czaszkę, opony mózgowo-rdzeniowe i barierę krew-mózg. Dlatego leczenie chorób go dotykających – jak udary czy choroba Alzheimera – nie jest łatwe. Jakiś czas temu naukowcy odkryli szlaki umożliwiające przemieszczanie się komórek układ odpornościowego ze szpiku kości czaszki do mózgu. Niemieccy naukowcy zauważyli, że komórki te przedostają się poza oponę twardą. Zaczęli więc zastanawiać się, czy kości czaszki zawierają jakieś szczególne komórki i molekuły, wyspecjalizowane do interakcji z mózgiem. Okazało się, że tak.
      Badania prowadził zespół profesora Alego Ertürka z Helmholtz Zentrum München we współpracy z naukowcami z Uniwersytetu Ludwika i Maksymiliana w Monachium oraz Uniwersytetu Technicznego w Monachium. Analizy RNA i białek zarówno w kościach mysich, jak i ludzkich, wykazały, że rzeczywiście kości czaszki są pod tym względem wyjątkowe. Zawierają unikatową populację neutrofili, odgrywających szczególną rolę w odpowiedzi immunologicznej. Odkrycie to ma olbrzymie znaczenie, gdyż wskazuje, że istnieje złożony system interakcji pomiędzy czaszką a mózgiem, mówi doktorant Ilgin Kolabas z Helmholtz München.
      To otwiera przed nami olbrzymie możliwości diagnostyczne i terapeutyczne, potencjalnie może zrewolucjonizować naszą wiedzę o chorobach neurologicznych. Ten przełom może doprowadzić do opracowania bardziej efektywnych sposobów monitorowania takich schorzeń jak udar czy choroba Alzheimer i, potencjalnie, pomóc w zapobieżeniu im poprzez wczesne wykrycie ich objawów, dodaje profesor Ertürk.
      Co więcej, badania techniką pozytonowej tomografii emisyjnej (PET) ujawniły, że sygnały z czaszki odpowiadają sygnałom z mózgu, a zmiany tych sygnałów odpowiadają postępom choroby Alzhaimera i udaru. To wskazuje na możliwość monitorowania stanu pacjenta za pomocą skanowania powierzchni jego głowy.
      Członkowie zespołu badawczego przewidują, że w przyszłości ich odkrycie przełoży się na opracowanie metod łatwego monitorowania stanu zdrowia mózgu oraz postępów chorób neurologicznych za pomocą prostych przenośnych urządzeń. Nie można wykluczyć, że dzięki niemu opracowane zostaną efektywne metody ich leczenia.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na łamach Human Brain Mapping ukazał się artykuł, którego autorzy informują o zauważeniu międzypłciowych różnic w budowie mózgu u 5-letnich dzieci. Różnice zaobserwowane w istocie białej uwidaczniają różnice w rozwoju obu płci. Wyraźnie widoczny jest dymorfizm płciowy, a już w 5-letnim mózgu widać znaczne różnice w wielu regionach mózgu. Uzyskane wyniki zgadzają się z wynikami wcześniejszych badań, które wskazywały na szybszy rozwój mózgu kobiet.
      Podczas badań naukowcy wykorzystali technikę MRI obrazowania tensora dyfuzji. Polega ona na wykrywaniu mikroskopijnych ruchów dyfuzyjnych cząsteczek wody w przestrzeni zewnątrzkomórkowej tkanek. Jednym z głównych parametrów ocenianych tą metodą jest frakcjonowana anizotropia (FA). Jako, że tkanka nerwowa ośrodkowego układu nerwowego ma uporządkowaną budowę, oceniając współczynnik FA można zauważyć różnice w budowę istoty białej.
      Uczeni z Uniwersytetu w Turku porównali tą metodą budowę istoty białej u 166 zdrowych niemowląt w wieku 2–5 tygodni oraz 144 zdrowych dzieci w wieku od 5,1 do 5,8 lat. O ile u niemowląt nie zauważono istotnych statystycznie różnic pomiędzy płciami, to już u 5-latków wyraźnie widoczne były różnice międzypłciowe. U dziewczynek wartości FA dla całej istoty białej były wyższe we wszystkich regionach mózgu. Szczególnie zaś duża różnica występowała dla tylnych i bocznych obszarów oraz dla prawej półkuli.
      W naszej próbce typowo rozwijających się zdrowych 5-latków odkryliśmy szeroko zakrojone różnice międzypłciowe we frakcjonowanej anizotropii istoty białej. Dziewczynki miały wyższą wartość FA we wszystkich obszarach, a różnice te były istotne. [...] W naszych badaniach uwidoczniliśmy znacząco większe różnice niż wcześniej opisywane. Uzyskane przez nas wyniki pokazują dymorfizm płciowy w strukturze rozwijającego się 5-letniego mózgu, z wyraźnie wykrywalnymi zmianami w wielu regionach, czytamy na łamach Human Brain Mapping.
      Autorzy przypuszczają, że różnice te mogą wynikać z różnej dynamiki rozwoju mózgu u obu płci. Przypominają też, że z innych badań wynika, iż w późniejszym wieku dynamika ta jest wyższa u chłopców, przez co z wiekiem różnice się minimalizują. To zaś może wyjaśniać, dlaczego autorzy niektórych badań nie zauważali różnic w próbkach starszych osób.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Gdy ponad 100 lat temu z pewnej angielskiej kopalni węgla wydobyto skamieniałą rybią czaszkę, jej odkrywcy z pewnością nie zdawali sobie sprawy, jaką sensację skrywa ich znalezisko. Przeprowadzone niedawno badania tomograficzne wykazały, że w czaszce zwierzęcia sprzed 319 milionów lat zachował się mózg. To najstarszy znany nam dobrze zachowany mózg kręgowca.
      Organ ma około 2,5 cm długości. Widoczne są nerwy, dzięki czemu naukowcy mają szansę na lepsze poznanie wczesnej ewolucji centralnego układu nerwowego promieniopłetwych, największej współcześnie żyjącej gromady ryb, w skład której wchodzi około 30 000 gatunków. Odkrycie rzuca też światło na możliwość zachowania się tkanek miękkich kręgowców w skamieniałościach i pokazuje, że muzealne kolekcje mogą kryć liczne niespodzianki.
      Ryba, której mózg się zachował, to Coccocephalus wildi, wczesny przedstawiciel promieniopłetwych, który żył w estuariach żywiąc się niewielkimi skorupiakami, owadami i głowonogami. Tan konkretny osobnik miał 15-20 centymetrów długości. Naukowcy z Uniwersytetów w Birmingham i Michigan nie spodziewali się odkrycia. Badali czaszkę, a jako że jest to jedyna skamieniałość tego gatunku, posługiwali się wyłącznie metodami niedestrukcyjnymi. Na zdjęciach z tomografu zauważyli, że czaszka nie jest pusta.
      Niespodziewane odkrycie zachowanego w trzech wymiarach mózgu kręgowca daje nam niezwykłą okazję do zbadania anatomii i ewolucji promieniopłetwych, cieszy się doktor Sam Giles. To pokazuje, że ewolucja mózgu była bardziej złożona, niż możemy wnioskować wyłącznie na podstawie obecnie żyjących gatunków i pozwala nam lepiej zdefiniować sposób i czas ewolucji współczesnych ryb, dodaje uczona. Badania zostały opublikowane na łamach Nature.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Wydziału Medycyny Uniwersytetu w Pittsburghu są prawdopodobnie pierwszymi, którzy donoszą o istnieniu w ludzkim mózgu 12-godzinnego cyklu aktywności genetycznej. Co więcej, na podstawie pośmiertnych badań tkanki mózgowej stwierdzili, że niektóre elementy tego cyklu są nieobecne lub zburzone u osób cierpiących na schizofrenię.
      Niewiele wiemy o aktywności genetycznej ludzkiego mózgu w cyklach krótszych niż 24-godzinne. Od dawna zaś obserwujemy 12-godzinny cykl aktywności genetycznej u morskich, które muszą dostosować swoją aktywność do pływów, a ostatnie badania wskazują na istnienie takich cykli u wielu różnych gatunków, od nicienia C. elegans, poprzez myszy po pawiana oliwkowego.
      Wiele aspektów ludzkiego zachowania – wzorzec snu czy wydajność procesów poznawczych – oraz fizjologii – ciśnienie krwi, poziom hormonów czy temperatura ciała – również wykazują rytm 12-godzinny, stwierdzają autorzy badań. Niewiele jednak wiemy o tym rytmie, szczególnie w odniesieniu do mózgu.
      Na podstawie badań tkanki mózgowej naukowcy stwierdzili, że w mózgach osób bez zdiagnozowanych chorób układu nerwowego, w ich grzbietowo-bocznej korze przedczołowej, widoczne są dwa 12-godzinne cykle genetyczne. Zwiększona aktywność genów ma miejsce w godzinach około 9 i 21 oraz 3 i 15. W cyklu poranno-wieczornym dochodzi do zwiększonej aktywności genów związanych z funkcjonowaniem mitochondriów, a zatem z zapewnieniem mózgowi energii. Natomiast w godzinach popołudniowych i nocnych – czyli ok. 15:00 i 3:00 – zwiększała się aktywność genów powiązanych z tworzeniem połączeń między neuronami.
      O ile nam wiadomo, są to pierwsze badania wykazujące istnienie 12-godzinnych cykli w ekspresji genów w ludzkim mózgu. Rytmy te są powiązane z podstawowymi procesami komórkowymi. Jednak u osób ze schizofrenią zaobserwowaliśmy silną redukcję aktywności w tych cyklach, informują naukowcy. U cierpiących na schizofrenię cykl związany z rozwojem i podtrzymywaniem struktury neuronalnej w ogóle nie istniał, a cykl mitochondrialny nie miał swoich szczytów w godzinach porannych i wieczornych, gdy człowiek się budzi i kładzie spać, a był przesunięty.
      W tej chwili autorzy badań nie potrafią rozstrzygnąć, czy zaobserwowane zaburzenia cykli u osób ze schizofrenią są przyczyną ich choroby, czy też są spowodowane innymi czynnikami, jak np. zażywanie leków lub zaburzenia snu.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...