Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Amerykańscy naukowcy oznakowali kałamarnice Humboldta (Dosidicus gigas). Dzięki temu mogli śledzić ich poczynania w środowiskach niemal pozbawionych tlenu.

Jak tłumaczy Julia Stewart z Uniwersytetu Stanforda, głowonogi nurkują w ciągu dnia i spędzają w wodach ubogich w tlen wiele godzin, wracając w pobliże powierzchni dopiero na noc. Byliśmy świadkami ich imponujących zanurzeń na głębokość 1,5 km. Zwierzęta przepływały przez obszary z bardzo niską zawartością tlenu.

Tagi odnotowywały temperaturę i głębokość. Po prawie miesiącu odpadały od ciała kałamarnicy i dryfowały na powierzchni. Gdy znajdowały się w zasięgu satelity, przekazywały zapisane informacje.

Naukowcy ze Stacji Morskiej Hopkinsa, która należy do Uniwersytetu Stanforda, prowadzili badania w obrębie Prądu Kalifornijskiego. Na głębokości ponad 500 m znajduje się tam pas wody o niskiej zawartości tlenu, dlatego zastanawiano się, jak D. gigas sobie z tym radzą. To niesamowite. Zwierzę, które wydawałoby się, potrzebuje dużo tlenu, pływa tam z podobną prędkością jak w wysoce natlenowanych wodach. Wydaje się, że w warunkach niedoboru tlenu potrafi w jakiś sposób przyhamować metabolizm, ale to wcale nie oznacza, że jest letargiczne. Pływa wtedy całkiem żwawo.

Ustalono, że w wodach powierzchniowych kałamarnice Humboldta osiągają prędkość 3 m/s, a na największych głębokościach 1-2 m/s. Spowolnienie nie jest więc tak duże, jak można by się spodziewać.

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      W Hiszpanii powstała woda o smaku wina, która pozwala konsumentom cieszyć się wybornym smakiem bez ryzyka upojenia alkoholowego. Vida Gallaecia to efekt 2-letniej współpracy między Bodega Líquido Gallaecia i Narodowym Komitetem Badań Naukowych (Consejo Superior de Investigaciones Científicas, CSIC).
      Ponoć finalny produkt smakuje jak wino, ale nie zawiera alkoholu i jest niskokaloryczny. Receptura to, oczywiście, tajemnica. Wiadomo tylko tyle, że wykorzystuje się flawonole z winogron i wytłoczyn po produkcji wina.
      Woda jest wzbogacana flawonolami z winogron i resztek po produkcji wina Godello. [Zdecydowaliśmy się na to, bo] wiele badań powiązało spożycie flawonoli z korzyściami dla zdrowia. Mają one, na przykład, pozytywny wpływ na cukrzycę. [Trudno się zresztą dziwić, gdyż] działają przeciwutleniająco, antybakteryjnie i kardioochronnie - podkreśla dr Carmen Martínez z Misión Biológica de Salcedo (CSIC).
      Vida Gallaecia jest wzbogacana smakami białego (Godello) i czerwonego szczepu winogron (Mencia, jaen). Sama woda pochodzi z galicyjskich źródeł.
      Produkt miał niedawno swoją premierę. Teraz Bodega Líquido Gallaecia szuka partnerów handlowych. Niedługo wodę o smaku wina będzie można kupić w Hiszpanii, ale ponoć winiarze widzą największy potencjał w rynku japońskim.
      Z bodegą kontaktowały się też pewne linie lotnicze, które chciałyby serwować napój w swoich maszynach.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Misja OSIRIS-REx, która niedawno dotarła do asteroidy Bennu, odkryła uwięzioną wewnątrz wodę. To potwierdzenie, że Bennu jest bardzo cennym obiektem do badań naukowych.
      OSIRIS-REX znajduje się w odległości kilkunastu kilometrów od asteroidy. Badania rozpoczęły się przed tygodniem. Naukowcy dysponują już pierwszymi danymi. Pochodzą one z dwóch spektrometrów OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) oraz OSIRIS-REx Thermal Emission Spectrometer (OTES). Wskazują one na istnienie grup hydroksylowych, molekuł składających się z atomów tlenu i wodoru. Uczeni przypuszczają, że istnieją one w całej asteroidzie i są zamknięte w tworzących ją glinach. To zaś oznacza, że w którymś momencie swojej historii materiał tworzący Bennu zetknął się z wodą.
      Sama asteroida jest zbyt mała, by występowała na niej woda w stanie ciekłym, jednak odkrycie grup hydroksylowych wskazuje, że ciekła woda była obecna na znacznie większej asteroidzie macierzystej, z której Bennu powstała.
      Obecność minerałów zawierających grupy hydroksylowe potwierdza, że Bennu, pozostałość po formowaniu się Układu Słonecznego, jest wspaniałym obiektem badań. Gdy w 2023 roku na Ziemię zostaną przywiezione próbki asteroidy, naukowcy zyskają skarbiec nowych informacji o historii i ewolucji Układu Słonecznego, mówi Amy Simon z Goddard Space Flight Center.
      Dane przekazane przez OSIRIS-REx Camera Suite (OCAMS) potwierdzają prawdziwość modelu asteroidy, który powstał w 2013 roku na potrzeby misji. Model ten bardzo blisko przypomina rzeczywisty kształt, średnicę i prędkość obrotową asteroidy.
      Powierzchnia Bennu to mieszanina fragmentów wypełnionych skałami i fragmentów dość płaskich. Ilość skalistych nierówności jest jednak większa niż się spodziewano. Zespół naukowy chce bliżej przyjrzeć się asteroidzie, by dobrze wybrać miejsce, z którego zostaną pobrane próbki.
      Wstępne dane wskazują, że wybraliśmy dobry obiekt dla misji OSIRIS-REx. Dotychczas nie napotkaliśmy na żadne problemy, z którymi nie moglibyśmy sobie poradzić. Sonda jest w dobrej kondycji, a instrumenty naukowe pracują lepiej, niż to wymagane. Czas rozpocząć naszą przygodę, stwierdził Dante Lauretta, główny naukowiec misji.
      Obecnie OSIRIS-REx wykonuje wstępne badania asteroidy, przelatując nad jej równikiem oraz oboma biegunami w odległości 7 kilometrów. Na ich podstawie zostanie obliczona masa obiektu. Jej znajomość jest niezbędnym elementem potrzebnym do umieszczenia sondy na orbicie Bennu.
      Po raz pierwszy OSIRIS-REx ma trafić na orbitę Bennu 31 grudnia. Pozostanie tam do połowy lutego. Później rozpocznie kolejną serię przelotów nad asteroidą. Już obecnie wiadomo, że orbita na którą trafi OSIRIS-REx będzie znajdowała się nad centralną częścią Bennu, na wysokości 1,4–2 kilometrów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Mikroorganizmy produkujące tlen w procesie fotosyntezy mogły istnieć na Ziemi co najmniej miliard lat wcześniej, niż dotychczas sądzono. Najnowsze odkrycie może zmienić nasze spojrzenie na ewolucję życia na Ziemi oraz na to, jak mogło ono ewoluować na innych planetach.
      Na Ziemi tlen jest niezbędny do powstania bardziej złożonych form życia, które wykorzystują go w procesie produkcji energii.
      Przed około 2,4 miliarda lat temu na Ziemi doszło katastrofy tlenowej. To nazwa wielkich przemian środowiskowych na Ziemi, których przyczyną było pojawienie się dużych ilości tlenu w atmosferze.
      Część naukowców uważa, że cyjanobakterie, które dostarczyły tlen do atmosfery, pojawiły się stosunkowo niedługo przed katastrofą tlenową. Jednak, jako, że cyjanobakterie wykorzystują dość złożony mechanizm fotosyntezy, podobny do tej używanego obecnie przez rośliny, inni uczeni uważają, że przed cyjanobakteriami mogły istnieć inne, prostsze mikroorganizmy produkujące tlen.
      Teraz naukowcy z Imperial College London poinformowali o znalezieniu dowodów na obecność fotosyntezy tlenowej na co najmniej miliard lat przed pojawieniem się cyjanobakterii.
      Wiemy, że cyjanobakterie są bardzo starymi formami życia. Nie wiemy jednak dokładnie, jak starymi. Jeśli cyjanobakterie liczą sobie, na przykład, 2,5 miliarda lat, to z naszych badań wynika, że fotosynteza tlenowa zachodziła na Ziemi już 3,5 miliarda lat temu. To zaś wskazuje, że pomiędzy powstaniem Ziemi a fotosyntezą prowadzącą do powstania tlenu nie musiało minąć tak dużo czasu, jak sądziliśmy, mówi główny autor badań, doktor Tanai Cardona.
      Jeśli fotosynteza tlenowa wyewoluowała wcześnie, oznacza to, że jest ona procesem, z którym ewolucja dość łatwo potrafi sobie poradzić. To zaś zwiększa prawdopodobieństwo pojawienia się jej na innych planetach i pojawienia się, wraz z nią, złożonych form życia.
      Jednak stwierdzenie, kiedy na Ziemi pojawili się pierwsi producenci tlenu, jest trudne. Im starsze są skały, tym rzadziej występują i tym trudniej udowodnić, że znalezione w nich skamieniałe mikroorganizmy wykorzystywały lub wytwarzały tlen.
      Zespół Cardony nie zajmował się więc skamieniałymi mikroorganizmami, a postanowił zbadać ewolucję dwóch głównych protein zaangażowanych w fotosyntezę, w wyniku której powstaje tlen.
      W pierwszym etapie fotosyntezy cyjanobakterie wykorzystują światło do rozbicia wody na protony, elektrony i tlen. Pomocny jest w tym kompleks białkowy o nazwie Fotoukład II.
      Fotoukład II złożony jest m.in. z homologicznych protein D1 oraz D2. W przeszłości było one identyczne, jednak obecnie są one kodowane przez różne sekwencje co wskazuje, że w pewnym momencie się rozdzieliły. Nawet wówczas, gdy były identyczne, były one w stanie prowadzić fotosyntezę tlenową. Jeśli jednak udałoby się określić moment, w którym się rozdzieliły, byłby to moment, w którym na pewno tlen powstawał na Ziemi w wyniku fotosyntezy.
      W przeszłości zatem podobieństwo sekwencji genetycznych kodujących D1 i D2 wynosiło 100%, obecnie zaś kodujące je sekwencje w cyjanobakteriach i roślinach są podobne do siebie w 30%. Naukowcy wykorzystali więc złożone modele statystyczne oraz znane fakty z historii ewolucji fotosyntezy, by dowiedzieć się, w jakim czasie mogło dojść do zmiany ze 100 do 30 procent. Wyliczyli, że D1 i D2 w Fotoukładzie II ewoluowały wyjątkowo powoli. Okazało się, że musiało minąć co najmniej miliard lat, by doszło do takiej zmiany w kodującej obie proteiny sekwencji genetycznej.
      Nasze badania sugerują, że fotosynteza tlenowa rozpoczęła się prawdopodobnie na długo przed pojawieniem się ostatniego przodka cyjanobakterii. Jest to zgodne z ostatnimi badaniami geologicznymi, które wskazują, że zlokalizowane gromadzenie sie tlenu było możliwe już ponad 3 miliardy lat temu. Tym samym pojawienie się cyjanobakterii i pojawienie się fotosyntezy, w wyniku której powstaje tlen, nie jest tym samym zjawiskiem. Pomiędzy oboma wydarzeniami mogło upłynąć bardzo dużo czasu. Dla nauki oznacza to wielką zmianę perspektywy, stwierdza Cardona.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Rosnąca liczba ludności wywiera coraz większy wpływ na środowisko naturalne. Szczególnym wyzwaniem jest zapewnienie odpowiednich zasobów rozrastającym się miastom, których zapotrzebowanie na surowce naturalne jest olbrzymie. Okazuje się, że zwiększenie liczby mieszkańców miasta może prowadzić do lepszego wykorzystywania zasobów. Do takich wniosków doszli naukowcy z Pennsylvania State University, którzy przeanalizowali sposób użycia wody w 65 amerykańskich miastach. Badali miejscowości od średnich rozmiarów po wielkie światowe metropolie.
      Organizacja życia człowieka na naszej planecie nigdy nie była bardziej złożona. Jesteśmy powiązani niezwykłą liczbą zależności światowego handlu i gospodarki. Mieszkańcy wsi kupują żywność przywożoną z drugiego końca kuli ziemskiej. Dlatego też potrzebujemy nowych złożonych narzędzi do analizowania sposobu, w jaki wykorzystujemy surowce naturalne, mówi inżynier profesor Caitlin Grady.
      Aby stworzyć narzędzia analityczne o których mowa, naukowcy musieli najpierw lepiej zrozumieć, w jaki sposób miasta wykorzystują wodę. Przyjrzeliśmy się sposobowi wykorzystywania wody. Nie tylko temu, jak woda trafia do kranów w domach, ale jak trafia do żywności, którą każde z miast produkuje i konsumuje. Przeanalizowaliśmy zarówno bezpośrednie jak i pośrednie użycie wody. Nasz ślad wodny, dodaje uczona.
      Naukowcy wykorzystali dane Departamentu Rolnictwa, Transportu i Służby Geologicznej na temat zaobów wody, przeanalizowali jej użycie przez rolnictwo, hodowlę i przemysł. Okazało się, że w przeliczeniu na głowę mieszkańca, większe miasta zużywają mniej wody.
      W miarę, jak wzrasta populacja miasta, zmniejsza się konsumpcja wody w przeliczeniu na mieszkańca. Największe miasta są pod tym względem najbardziej efektywne, mówi Grady.
      Konsumpcja wody i jej zużycie do produkcji są powiązane ze strukturą gospodarczą miasta, która zmienia się w miarę jego wzrostu. To sugeruje, że większe miasta są bardziej zorientowane na usługi, a spada w nich znaczenie przemysłu. To pozwala wielkim miastom na zmniejszenie ich śladu wodnego poprzez przekierowanie aktywności wymagających zużycia dużych ilości wody do terenów słabiej zaludnionych, wyjaśnia doktorant Tasnuva Mahjabin.
      Zauważono też wyjątki. Nowy Orlean ma znacznie większą konsumpcję wody niż wskazywałaby na to jego wielkość, a z kolei zużycie wody w Los Angeles jest znacznie poniżej średniej dla tej wielkości miast.
      W przyszłości uczeni chcą rozwinąć swój model tak, by pozwalał na analizę większej liczby danych, na przykład, by mógł posłużyć do obliczenia ilości wody zużywanej do produkcji i dostaw energii elektrycznej czy stabilności systemu dostaw wody.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Potężny laser rentgenowski został wykorzystany do podgrzania wody od temperatury pokojowej do 100 000 stopni Celsjusza w czasie krótszym niż 1/10 pikosekundy. W czasie eksperymentu powstał egzotyczny stan wody, a naukowcy mają nadzieję wykorzystać go do badań nad właściwościami życiodajnego płynu. Badanie tego typu będą miały też praktyczne przełożenie na techniki badania próbek biologicznych i innych materiałów za pomocą laserów z promieniowaniem X.
      Badania zostały przeprowadzone przez zespół Carla Calemana z DESY (Niemiecki Synchrotron Elektronowy) oraz szwedzkiego Uniwersytetu w Uppsali, który wykorzystał amerykański laser Linac Coherent Light Source (LCLS) ze SLAC National Accelerator Laboratory. Podczas eksperymentów w stronę strumienia wody wystrzeliwano ultrakrótkie intensywne promienie. To nie jest zwykły sposób podgrzewania wody. Normalnie, gdy podgrzewasz wodę jej molekuły trzęsą się coraz silniej i silniej, mówi Caleman. Z molekularnego punktu widzenia ciepło to ruch molekuł. Im wyższa temperatura tym szybszy ruch molekuł.
      Nasz sposób podgrzewania jest całkowicie różny. Intensywne promieniowanie X wyrzuca elektrony z molekuł wody i w ten sposób zaburza ich równowagę elektryczną. Więc nagle atomy odczuwają silny odrzut i zaczyna się gwałtownie poruszać, wyjaśnia uczony. W czasie krótszym niż 75 femtosekund (0,000000000000075 sekundy) woda przechodzi przemianę fazową z cieczy w plazmę, czy rodzaj elektrycznie naładowanego gazu. Jednak podczas tego przejścia woda wciąż ma gęstość ciekłej wody, gdyż jej atomy nie miały czasu, by się od siebie odsunąć, mówi współautor badań, Olof Jonsson z Uniwersytetu w Uppsali. Powstaje egzotyczny stan materii, który nie występuje na Ziemi. Ma on podobne cechy jak część plazmy w Słońcu czy w gazowym olbrzymie Jowiszu, ale ma mniejszą gęstość. Jednocześnie jest cieplejsza niż jądro Ziemi.
      Woda to dziwny płyn i gdyby nie to, że ma niezwykłe właściwości, wiele rzeczy na Ziemi nie byłoby takie, jakimi je znamy. Dotyczy to szczególnie życia, podkreśla Jonsson. Woda różni się od innych płynów gęstością, pojemnością cieplną czy przewodnictwem cieplnym. W przyszłości ten rozpowszechniony na Ziemi i jednocześnie tak niezwykły płyn będzie przedmiotem badań w planowym przez DESY Centrum Wiedzy o Wodzie.
      Najnowsze badania wykazały, że po uderzeniu bardzo silnym impulsem promieniowania przez 25 femtosekund w wodzie niemal nie zachodziły żadne zmiany strukturalne. Ale już po 75 femtosekundach zmiany takie były ewidentne. Naukowcy zauważają, że badania te pokazują, iż badanie za pomocą silnych laserów rentgenowskich wszystkiego, co nie jest kryształem, wiąże się ze zniszczeniem próbki. Trzeba brać to pod uwagę przy rozwijaniu technik obrazowania za pomocą laserów X pojedynczych molekuł i innych niewielkich próbek, dodaje Nicusor Timneanu z Uniwersytetu w Uppsali.

      « powrót do artykułu
×
×
  • Create New...