Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Czarna herbata obniża ciśnienie krwi
dodany przez
KopalniaWiedzy.pl, w Zdrowie i uroda
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Płomykówki zwyczajne (Tyto alba) polują niemal bezszelestnie. Udaje im się to, bo lecą bardzo wolno, przez co ograniczają liczbę machnięć skrzydłami. Wolny lot to zasługa specjalnej budowy i kształtu skrzydeł.
Dr Thomas Bachmann z Uniwersytetu Technicznego w Darmstadt zbadał upierzenie tych sów oraz wykonał obrazowanie 3D ich kośćca. Wyniki swoich badań przedstawił na dorocznej konferencji Stowarzyszenia Biologii Integracyjnej i Porównawczej w Charleston.
Płomykówki polują przeważnie w ciemności, dlatego polegają na informacjach akustycznych. Muszą latać cicho, by słyszeć przemieszczające się nornice i nie zaalarmować ofiary, że znajdują się gdzieś w pobliżu.
Jedną z najważniejszych cech skrzydeł T. alba jest duża krzywizna. Zapewnia ona lepszą nośność. Przepływ powietrza nad górną powierzchnią skrzydła ulega przyspieszeniu, przez co spada ciśnienie. Skrzydło jest zasysane w górę, w kierunku niższego ciśnienia.
Za sprawą delikatnej powierzchni zredukowaniu ulega hałas związany z tarciem pióra o pióro. Poza tym całe ciało sowy jest pokryte grubą warstwą piór. Płomykówka ma ich o wiele więcej niż ptak podobnej wielkości. Gęsto rozmieszczone pióra działają jak panele akustyczne, które pochłaniają wszystkie niechciane dźwięki.
-
przez KopalniaWiedzy.pl
W odpowiednich warunkach woda może stać się metalem, a następnie izolatorem, stwierdzili uczeni z Cornell University. W PNAS ukazał się artykuł, w którym Neil Ashcroft, Roald Hoffmann i Andreas Hermann opisują wyniki swoich teoretycznych obliczeń.
Wynika z nich, że przy ciśnieniu rzędu 1-5 terapaskali woda tworzy stabilne struktury. Mimo, że ciśnienie takie jest dziesiątki milionów razy większe od ciśnienia ziemskiego, istnienie wody w takim stanie nie jest wykluczone. Wręcz przeciwnie, może ona powszechnie występować nawet w naszym Układzie Słonecznym. Tak olbrzymie ciśnienie może panować wewnątrz Urana.
Z wyliczeń uczonych wynika, że powyżej 1 terapaskala poszczególne molekuły wody przestają istnieć, a H2O zostaje ściśnięta tworząc siatkę połączeń tlenu i wodoru, która przyjmuje najróżniejsze kształty. Już wcześniej obliczano, że przy ciśnieniu 1,55 TPa woda staje się metalem i ma najbardziej stabilną strukturę. Naukowcy z Cornell poszli dalej i udało im się wyliczyć, że najbardziej stabilna jest woda przy ciśnieniu wyższym od 4,8 TPa. Wówczas jednak traci ona właściwości metalu i staje się izolatorem.
Jak zauważa profesor Ashcroft, najbardziej niezwykłym wnioskiem wypływającym z obliczeń jest odkrycie, że olbrzymie ciśnienie powoduje, iż woda przestaje być ciałem stałym i w pewnym momencie zamienia się w kwantową ciecz. Trudno jest to sobie wyobrazić - topienie lodu pod wpływem podwyższonego ciśnienia - stwierdził naukowiec.
-
przez KopalniaWiedzy.pl
Śmiech prowadzi do rozszerzenia naczyń i spadku ciśnienia tętniczego. Naukowcy polecają więc, by od czasu do czasu obejrzeć jakąś komedię lub spróbować dostrzec coś zabawnego w codziennych wydarzeniach.
Pomysł, by zająć się pozytywnymi emocjami, np. śmiechem, przyszedł nam do głowy po badaniach, które wykazały, że stres powoduje skurcz naczyń krwionośnych – wyjaśnia dr Michael Miller ze Szkoły Medycznej University of Maryland.
W pierwszych badaniach sprzed ponad dekady 300 kobiet i mężczyzn wypełniało kwestionariusz dotyczący humoru sytuacyjnego. Na skali od 1 (zupełnie nieśmieszne) do 5 (bardzo śmieszne) należało się ustosunkować do szeregu stwierdzeń, np. Jak zareagujesz, spotykając na przyjęciu kogoś ubranego jak ty? Amerykanie stwierdzili, że osoby z chorobą serca o 40% rzadziej uznawały przedstawione sytuacje za śmieszne. Wtedy studium nie pozwoliło na ustalenie związku przyczynowo-skutkowego i stwierdzenie, że podejście do życia z humorem zabezpiecza przed chorobami serca (albo jak wspominają naukowcy, że zawał serca zmniejsza prawdopodobieństwo reagowania rozbawieniem), dlatego później rozpoczęły się eksperymenty, które miały pokazać, jak śmiech wpływa na funkcje naczyń.
W ramach najnowszych badań Millera jednego dnia ochotnicy oglądali fragmenty śmiesznych filmów, np. ze "Sposobu na blondynkę", a drugiego stresującą scenę otwierającą "Szeregowca Ryana".
Podczas oglądania "Szeregowca Ryana" dochodziło do wazokonstrykcji, czyli skurczu mięśni gładkich w ścianie naczyń krwionośnych, i wzrostu ciśnienia. Oglądanie śmiesznych scen działało dokładnie na odwrót: mięśnie ściany naczynia się rozkurczały.
Naukowcy dokonali ponad 300 pomiarów na tętnicy ramiennej. Porównując reakcje każdej z osób na fragmenty śmieszne i stresujące, stwierdzono 30-50-proc. różnice w średnicy światła naczyń. Zaobserwowany zakres zmian w śródbłonku był […] podobny do korzyści osiąganych dzięki ćwiczeniom aerobowym i statynom”. Śródbłonek to pierwsze miejsce rozwoju miażdżycy [na początkowym etapie komórki śródbłonka gromadzą nadmierne ilości cholesterolu i innych lipidów], dlatego niewykluczone, że regularny śmiech mógłby być istotną częścią zdrowego stylu życia i zapobiegania chorobom serca.
-
przez KopalniaWiedzy.pl
Posługując się urządzeniem mikrostrumieniowym, prof. Roger Kamm, William Polacheck i Joseph Charest z MIT-u wykazali, że kierunek przepływu płynów przez tkanki określa prawdopodobieństwo rozprzestrzeniania się nowotworu. Wiedząc to, w przyszłości lekarze będą mogli i zmniejszyć ryzyko powstawania przerzutów.
Naukowcy chwalą się, że niemal tak samo ważny, jak ich odkrycia jest stworzony na potrzeby eksperymentu trójwymiarowy system mikrostrumieniowy. Podczas gdy wcześniejsze badania bazowały na wizualizowaniu pojedynczych komórek w sztucznym środowisku pozakomórkowym, urządzenie zespołu z MIT-u pozwala stwierdzić, jak komórki oddziałują z tkanką, która naśladuje naturalną tkankę piersi.
Na rynku nie ma obecnie ani jednego leku, który działałby w oparciu o to, jak komórki nowotworowe odrywają się od pierwotnego guza, dostają się do układu krążenia, migrują i tworzą wtórny guz. Takie właśnie procesy możemy symulować w naszym systemie mikrostrumieniowym – podkreśla Kamm.
Zaczynając badania, Amerykanie wiedzieli, że wskutek ciągłego wzrostu guz prowadzi do wytworzenia wysokiego ciśnienia cieczy w otaczających tkankach. To z kolei skutkuje odpływem cieczy z samego guza. Melody Swartz, która kiedyś współpracowała z Kammem, a później przeniosła się do École Polytechnique Fédérale de Lausanne, odkryła, że wskutek tego odpływu ligandy wydzielane przez guz wybiórczo wiążą się z receptorami w części komórki znajdującej się przy głównym nurcie. Dochodzi do wytworzenia asymetrii, co ostatecznie sprawia, że komórki zaczynają migrować z nurtem. Gdyby na tym wszystko się kończyło, perspektywy byłyby niezbyt zachęcające. Oznaczałoby to bowiem, że komórki nowotworowe szybko dostaną się do układu krążenia. Polacheck i Kamm zauważyli jednak, że zjawiska zaobserwowane przez Swartz to tylko jedna strona medalu.
Ich urządzenie składa się dwóch kanałów, oddzielonych od siebie warstwą żelu z pojedynczymi komórkami, czyli macierzą, w której zachodzi przepływ cieczy. Podczas eksperymentów z komórkami raka sutka zespół zauważył, że komórki nowotworowe poruszają się pod prąd. Na początku zaczęto kwestionować spostrzeżenia Swartz, ale później okazało się, że w grę wchodzą dwa konkurujące ze sobą mechanizmy. Jednym z nich jest autologiczna chemotaksja dodatnia, która zachodzi przy niskim zagęszczeniu komórek lub pod wpływem aktywacji receptora CCR7 (receptora chemokin z podrodziny C-C typu 7.). Chemotaksja prowadzi do migracji z prądem, gdyż stężenie ligandów jest wyższe po stronie komórki przy głównym nurcie. Drugi mechanizm działa przy dużym zagęszczeniu komórek, np. wokół rosnącego guza, albo wtedy, gdy receptor CCR7 jest zablokowany. Włącza się on, kiedy płyn przepływający obok komórki aktywuje receptory integrynowe. Wskutek tego rozpoczyna się migracja pod prąd.
Firmy farmaceutyczne mogą wykorzystać te informacje, by skupić się na stworzeniu leków blokujących receptory CCR7, co zapobiegłoby migracji w stronę układu krwionośnego i prowadziłoby do uwięzienia guza.
-
przez KopalniaWiedzy.pl
Oleg Prezhdo i Vitaly Chaban z Uniwersytetu w Rochester znaleźli nowy sposób na otwarcie pojemnika z lekiem, kiedy już dotrze na właściwe miejsce w organizmie. Wystarczy podgrzać wodę w węglowych nanorurkach.
Naukowcy przeprowadzili symulację i stwierdzili, że woda w nanorurkach wrze przy temperaturze wyższej niż zwykle, a niewielki wzrost temperatury powyżej temperatury wrzenia prowadzi do szybszego wzrostu ciśnienia pary niż w przypadku dużego pojemnika.
Panowie uważają, że szybki wzrost ciśnienia można by wykorzystać do dostarczenia leków. Lasery działające na podczerwień wybiórczo podgrzewałyby nanorurki, nie uszkadzając przy tym okolicznych tkanek.
Akademicy wyjaśniają, że punkt wrzenia da się precyzyjnie kontrolować za pomocą średnicy nanorurek. W ich wnętrzu należy umieścić polarne cząsteczki leku, no i oczywiście rozpuszczalnik (polarność polega na występowaniu elektrycznego momentu dipolowego, wynikającego z nierównomiernego rozmieszczenia ładunków w cząsteczce). Prezhdo i Chaban zwrócili uwagę na nanorurki jako podstawę systemu nowoczesnego dostarczania leków, ponieważ są one hydrofobowe i mają zdolność absorbowania światła penetrującego tkanki. Do eksperymentów wybrano ciprofloksacynę - chemioterapeutyk z grupy fluorochinolonów, który wykazuje działanie bakteriobójcze.
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.