Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Ludzi i zwierzęta można odróżniać po głosie, naukowcy zaczęli się jednak zastanawiać, czy równie charakterystyczne są komunikaty akustyczne innego rodzaju, np. rytm wystukiwany skrzydłami na gałęziach przez samce cieciornika (Bonasa umbellus).

Jak wyjaśnia główny autor badań, Andrew Iwaniuk z Uniwersytetu w Lethbridge, każde z wejść "sekcji perkusyjnej" trwa mniej więcej 10 sekund i składa się z ok. 50 uderzeń. Kanadyjczycy nagrali 449 takich jam sessions w wykonaniu 23 samców. Okazało się, że liczba uderzeń i tempo ich wykonywania są typowe dla danego osobnika. Oznacza to, że samice mogą wykorzystywać cechy wystąpień do rozpoznawania ich autorów.

Ornitolodzy nagrywali bębnienie cieciorników podczas 2 sesji terenowych. Szczegółowe analizy ujawniły, że każdy pokaz składa się z 39-50 uderzeń, trwa 9-10 s, a częstotliwość większości dźwięków mieści się poniżej 100 Hz.

Na razie nie wiadomo, po co cieciornikom zindywidualizowane bębnienie. Być może w grę wchodzą rytuały związane z zalotami i rozmnażaniem, niewykluczone też, że to sygnał świadczący o pozycji zajmowanej w hierarchii.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Samce i samice nie tylko wykazują różne zachowania seksualne, ale różnice te są ewolucyjnie zaprogramowane, dowiadujemy się z nowych badań przeprowadzonych na Uniwersytecie Oksfordzkim. Zespół pod kierownictwem doktora Tesuyi Noimy i doktor Anniki Rings wykazał, że układ nerwowy obu płci, pomimo bardzo podobnej budowy, przekazuje różne sygnały samcom, a różne samicom.
      Naukowcy z Wydziału Fizjologii, Anatomii i Genetyki stwierdzili, że samce i samice muszek owocówek, pomimo niezwykle podobnego genomu i systemu nerwowego różnią się głęboko w sposobie inwestowania w strategie rozrodcze, które wymagają odmiennych adaptacji behawioralnych, morfologicznych i fizjologicznych.
      U większości gatunków zwierząt występują międzypłciowe różnice w kosztach reprodukcji. Samice często odnoszą największe korzyści z wydania na świat młodych jak najwyższej jakości, podczas gdy samce często odnoszą korzyści z łączenia się z jak największą liczbą samic. W wyniku ewolucji pojawiły się więc głębokie różnice, służące zaspokojeniu tych potrzeb.
      Uczeni z Oxfordu chcieli odpowiedzieć na pytanie, w jaki sposób różnice w międzypłciowych strategiach rozrodczych objawiają się na poziomie układu nerwowego i jak się mają do ograniczeń fizycznych, w tym ograniczeń dotyczących rozmiaru ciała czy wydatkowania energii, które są spowodowane faktem posiadania przez obie płcie bardzo podobnego genomu.
      Naukowcy odkryli, że w mózgach samic i samców – pomimo podobieństw genetycznych – istnieją różnice w niektórych obszarach mózgu. Pozwalają one na istnienie znacząco odmiennych strategii, pomimo niewielkich różnic w samej architekturze połączeń pomiędzy neuronami.
      Samce muszek owocówek zdobywają samice poprzez odpowiednie zachowania godowe. Zatem w ich strategii rozrodczej dużą rolę odgrywa możliwość gonienia samicy. Dla samic takie zachowania praktycznie nie mają znacznia. W ich przypadku ważny jest sukces potomstwa, a tutaj bardzo ważną rolę odgrywa umiejętność wyboru jak najlepszego miejsca złożenia jaj.
      Brytyjscy uczeni badali różnice w działaniu czterech grup neuronów umieszczonych parami po jednej w każdej z półkul mózgu samców i samic. Odkryli, że połączenia pomiędzy neuronami w tych grupach przebiegają nieco inaczej, w zależności od płci badanego zwierzęcia. Okazało się, że dzięki tym różnicom samce odbierają więcej bodźców wzrokowych, a samice – węchowych. Co więcej, uczeni wykazali, że to właśnie te różnice odpowiadają za różnice w zachowaniu zwierząt. W przypadku samców jest to sterowana wzrokiem zdolność do podążania za samicą, w przypadku samic – zdolność do wspólnego składania jaj w najlepszych miejscach.
      Te niewielkie różnice w połączeniach pomiędzy neuronami pozwalają na istnienie specyficznej dla płci strategii ewolucyjnej. Ostateczny cel tych różnic jest taki sam – odniesienie sukcesu reprodukcyjnego, stwierdzają autorzy badań.
      To pierwsze badania, które wykazały istnienie bezpośredniego silnego związku pomiędzy różnicami w budowie mózgu, a zachowaniami typowymi dla danej płci.
      Wcześniejsze badania na ten temat sugerowały, że istnienie międzypłciowych różnic w przetwarzaniu informacji sensorycznych może prowadzić do zachowań typowych dla płci. Jednak badania te ograniczały się do wykazania istnienia różnic neuroanatomicznych i fizjologicznych, bez udowodnienia ich związku z zachowaniami. My poszliśmy dalej. Powiązaliśmy anatomiczne różnice z charakterystyczną dla płci fizjologią, zachowaniem i rolami płciowymi, mówi profesor Stephen Goodwin, w którego zespole pracują autorzy badań.
      Artykuł A sex-specific switch between visual and olfactory inputs underlies adaptive sex differences in behaviour jest dostępny na łamach Current Biology.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wiemy, że kobiety żyją dłużej od mężczyzn. Średnia długość życia przedstawicielek płci pięknej jest o 7,8% większa, niż w przypadku panów. Jak się okazuje, ta różnica jest jeszcze większa w przypadku dziko żyjących ssaków. Przeciętna samica dzikiego ssaka żyje aż o 18,6% dłużej niż samiec
      Największą różnice widać u kitanki lisiej, lwów, łosi, orek, kudu wielkiego i owiec, mówi profesor Fernando Colchero z Interdyscyplinarnego Centrum Dynamiki Populacji na Uniwersytecie Południowej Danii. Uczony wraz ze swoimi współpracownikami zebrali dane demograficzne dotyczące ponad 130 populacji dzikich ssaków i określili zarówno średnią długość życia, jak i ryzyko zgonu jako funkcję wieku dla obu płci.
      Nie tylko okazało się, że samice żyją dłużej, ale również, że w większości populacji różnica ta jest większa niż w przypadku człowieka.
      Dla około połowy zbadanych przez nas populacji ryzyko zgonu związane z wiekiem jest bardziej wyraźne u samic, niż u samców mówi Colchero. To zaś oznacza, że większa długość życia samic ma prawdopodobnie związek z innymi czynnikami, z którymi zwierzęta stykają się w ciągu dorosłego życia.
      Powszechnie uważa się, że samce angażują się w potencjalnie niebezpieczną rywalizację seksualną i prowadzą bardziej ryzykowny tryb życia, co wpływa na ogólną średnią wieku. Jednak Colchero nie zauważył, by intensywność selekcji seksualnej miała bezpośredni wpływ na ryzyko zgonu wśród obu płci. Badania sugerują raczej, że ważniejsze są tutaj złożone interakcje pomiędzy cechami fizjologicznymi obu płci i warunkami środowiskowymi, w jakich żyją.
      Obserwowaliśmy spore różnice. W przypadku niektórych gatunków to samce żyją najdłużej. Widzimy tam jasny trend statystyczny, który może być wyjaśniany na wiele różnych sposobów, dodaje profesor Dalia Conde z Wydziału Biologii.
      Jedną z przyczyn, dla której samce żyją krócej, może być np. konieczność włożenia przez nich więcej energii w wyhodowanie cech potrzebnych do rywalizacji o samice, takich jak duże rogi. To wymaga sporo energii, a jeśli dany gatunek żyje w trudnych warunkach środowiskowych, to połączenie obu elementów może negatywnie wpływać na szanse na przeżycie. Inne możliwe wyjaśnienie mówi, że przyczyną są androgeny. Samce wytwarzają je więcej niż samice. Androgeny wpływają na wydajność układu odpornościowego, gdy jest ich zbyt dużo wpływ ten jest negatywny, przez co samce mogą być bardziej podatne na infekcje i różne choroby.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Artykuł dotyczący nowotworu pyska u diabłów tasmańskich to druga w ostatnim czasie dobra wiadomość, która może pomóc w ocaleniu gatunku. Z magazynu Cell dowiadujemy się, że nowotwór pochodzi od jednej samicy, która zachorowała przed 15 laty.
      Populacja diabła tasmańskiego jest od lat dziesiątkowana przez zaraźliwy nowotwór pyska. Gatunkowi grozi całkowite wyginięcie, co oznaczałoby stratę nie tylko diabła, ale również zagroziłoby całemu ekosystemowi, gdyż kontroluje on populacje inwazyjnych dzikich kotów i lisów, które wyniszczą inne gatunki gdy diabła zabraknie.
      Opisywane w Cell badania pokazały, że wszystkie nowotwory u wszystkich zwierząt zawierają komórki pierwotnego nosiciela. Nazywam ją nieśmiertelnym diabłem. Jej komórki żyją długo po jej śmierci - mówi Elizabeth Murchison, badaczka z Wellcome Trust Sanger Institute.
      Nowotwór występujący u diabłów tasmańskich to jedyny nowotwór, który zagraża egzystencji całego gatunku - dodaje.
      Naukowcy przebadali próbki nowotworu pobrane od 104 osobników schwytanych w różnych miejscach Tasmanii. Chociaż same nowotwory różniły się od siebie, to wszystkie zawierały komórki tej samej samicy. Zsekwencjownowanie genomu pozwoliło nam na zbadanie mutacji, które przyczyniły się do rozwoju nowotworu - mówi Murchison. Naukowcy mają nadzieję, że dalsze badania pozwolą na opracowanie odpowiedniego leku. Zbadanie ewolucji choroby i jej sposobu rozprzestrzeniania się pozwala nam zrozumieć jej przyczyny oraz przewidzieć, jak może się ona rozwijać w przyszłości - powiedział David Bentley, szef zespołu naukowego z Illumina Cambridge Ltd.
      Nowotwór pyska diabłów tasmańskich ma ponad 17 000 różnych mutacji. To mniej mutacji niż znajdujemy u niektórych nowotworów występujących u ludzi, a to oznacza, że nowotwory nie muszą być skrajnie niestabilne by stały się zaraźliwe - mówi Bentley. Dotychczas znaliśmy jeden zaraźliwy nowotwór - przenoszony drogą płciową nowotwór atakujący psy i wilki.
      Badania nad chorobą dziesiątkującą diabła tasmańskiego mogą uratować nie tylko ten gatunek, ale również przygotować naukowców na wypadek wystąpienia zaraźliwego nowotworu u ludzi.
    • przez KopalniaWiedzy.pl
      Osoby niesłyszące, które posługują się językiem migowym, szybciej rozpoznają i interpretują język ciała niż niemigający ludzie słyszący - twierdzą naukowcy z Uniwersytetów Kalifornijskich w Davis oraz Irvine (Cognition).
      Istnieje wiele anegdot o niesłyszących lepiej radzących sobie ze wskazówkami z mowy ciała, ale to pierwszy [twardy] dowód - zaznacza prof. David Corina.
      Corina i doktorant Michael Grosvald mierzyli czas reakcji słyszących i niesłyszących na serię wideoklipów z ludźmi pokazującymi znaki z amerykańskiego języka migowego oraz nieznaczące gesty, np. głaskanie brody. Spodziewaliśmy się, że niesłyszący będą szybciej rozpoznawać język migowy, ponieważ znają go i posługują się nim na co dzień, ale prawdziwym zaskoczeniem było, że w porównaniu do słyszących, o ok. 100 milisekund prędzej rozpoznawali także gesty niejęzykowe - wyjaśnia Corina.
      Wyniki uzyskane przez zespół sugerują, że ludzka zdolność komunikowania się jest modyfikowalna i nie ogranicza się do mowy. Język migowy wydaje się bazować na systemie wykorzystywanym do rozpoznawania gestów i mowy ciała, a nie na zupełnie nowym układzie.
    • przez KopalniaWiedzy.pl
      Sukces reprodukcyjny samicy świstaka alpejskiego zależy od tego, czy w łonie matki przebywała w pobliżu swoich braci. Jeśli samiczka ułożyła się między braćmi, mógł na nią wpływać przenikający do wód płodowy testosteron. Hormon określa stopień agresji przejawianej w dorosłym życiu, a bardziej agresywne samice mają szansę spłodzić więcej potomstwa (Mammal Review).
      Walter Arnold z Uniwersytetu Medycyny Weterynaryjnej w Wiedniu oraz Klaus Hackländer z Universität für Bodenkultur Wien przez 14 lat zajmowali się sukcesem reprodukcyjnym samic świstaków z 3 populacji żyjących na terenie Parku Narodowego Berchtesgaden. Zespół dodaje, że by lepiej zrozumieć sytuację, należy pamiętać, że Marmota marmota żyją w dużych grupach rodzinnych, które liczą do 20 osobników. Składają się one z dominującej, terytorialnej pary i podporządkowanych osobników, najczęściej potomków dominującej samicy i samca.
      Wyniki Austriaków pokazały, że męskie odchylenie w miocie sprzyjało generowaniu bardziej agresywnego żeńskiego fenotypu. To ważne, skoro rozmnożyć się może tylko dominująca samica, a szanse na zostanie nią rosną wraz z poziomem agresji.
      Aby oznaczyć położenie samic w macicy, Hackländer i Arnold znakowali świstaki. Rocznie tagowali i wypuszczali średnio 141 osobników. Umożliwiało to zbadanie składu grupy, wyników reprodukcyjnych samic oraz pokrewieństwa między członkami grupy. Określając stosunek płci w miocie, biolodzy byli w stanie wyliczyć prawdopodobieństwo, z jakim samice znajdowały się w łonie matki obok samca. Nietrudno się domyślić, że w miocie z odchyleniem męskim szansa na to, że samiczka ułoży się między dwoma braćmi, jest dużo większa.
      Wcześniejsze badania nad innymi gatunkami zademonstrowały, że pozycja w macicy wpływa na późniejszy rozwój. U myszy domowej ułożenie między dwoma samcami sprawia, że samica staje się bardziej agresywna, ale jednocześnie ma mniej młodych. U świstaków występuje odwrotny efekt: im większe męskie odchylenie w miocie, tym większa szansa na dominującą pozycję w hierarchii i rozmnożenie się.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...