Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Naturalne zmiany środowiskowe (a nie zanieczyszczenie będące skutkiem działalności człowieka) odpowiadają za pomór flamingów w Kenii — uważają naukowcy. Spadek liczebności tych ptaków jest ciosem wymierzonym w turystykę, ponieważ to właśnie one stanowią jedną z najważniejszych atrakcji i zdobią większość pocztówek czy koszulek.

Badacze z Earthwatch zaobserwowali, że flamingi z jeziora Bogoria zaspokajają tylko jedną dziesiątą swojego dziennego zapotrzebowania na pokarm. Dzieje się tak, ponieważ ulewne deszcze zalały dopływające do zbiornika wodnego cieki i rozproszyły glony, którymi żywią się ptaki. Naukowcy widzieli też zmiany w zachowaniu flamingów. Przestały one żerować, brodząc przy brzegu w większych grupach i przeniosły się albo na otwarte wody, albo na niewielkie strumienie i podeszczowe kałuże.

David Harper z Leicester University, szef zespołu badawczego, obawia się, że może dojść do masowego wymierania flamingów. Stałoby się tak z powodu głodu lub w wyniku wzrostu podatności na choroby zakaźne.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Płoty z wbudowanymi ulami zmniejszyły liczbę niszczycielskich najazdów słoni na pola uprawne kenijskich rolników. Po 2 latach prób naukowcy z Uniwersytetu Oksfordzkiego i organizacji charytatywnej Ocalić Słonie odkryli, że napotykając na ule, słonie aż w 97% przypadków rezygnowały z łatwego łupu. Wyniki obserwacji opublikowano w branżowym piśmie African Journal of Ecology.
      Szare olbrzymy boją się pszczół, a owady spełniają kilka pozytywnych funkcji. Poza byciem straszakiem na słonie, zajmują się jak zwykle zapylaniem i robieniem pysznego miodu, który można potem sprzedać.
      W ciągu ostatnich 2 dekad liczba słoni w Kenii wzrosła do ok. 7,5 tys. Choć można to uznać za niewątpliwy sukces obrońców zwierząt, wraz ze skokiem pogłowia zaczęły narastać konflikty na linii słonie-ludzie, ponieważ ssaki często przychodzą na pola na posiłek z dojrzałych pomidorów, ziemniaków i kukurydzy. Broniąc swoich plonów, rolnicy sięgają czasem po drastyczne rozwiązania, takie jak trucizny czy broń palna.
      Dr Lucy King z Uniwersytetu Oksfordzkiego wylicza, że przy 32 próbach wdarcia się na pola w czasie 3 okresów zbiorów tylko jeden samiec zdołał sforsować płot z ulami. Ule zawieszono na drutach rozciągniętych między słupkami. Nad nimi znajdowały się daszki z gałęzi, które miały chronić przed palącym słońcem. Naukowcy ogrodzili 17 farm. W 1700 m płotu wmontowali 170 uli.
    • By KopalniaWiedzy.pl
      Po raz pierwszy w historii nauki biolodzy opisali rośliny żyjące wewnątrz komórek kręgowców. Okazało się bowiem, że glony występują nie tylko pod osłoną jaj ambystomy plamistej (Ambystoma maculatum), ale i w komórkach rozwijających się embrionów. Co więcej, kanadyjsko-amerykański zespół uważa, że algi są najprawdopodobniej dziedziczone po rodzicach.
      Zespół doktora Ryana Kerneya z Dalhousie University opublikował wyniki swoich badań w piśmie Proceedings of the National Academy of Sciences. O tym, że glony występują w jajach ambystom, wiedziano już od długiego czasu, problemem było jednak to, jak się tam dostają. Sprawa się nieco wyjaśniła, gdy odkryto DNA glonów w organach reprodukcyjnych dorosłych płazów. Wydaje się zatem możliwe, że ulegają one dziedziczeniu. Nazywamy to transmisją wertykalną, ale prawdopodobnie mamy do czynienia z połączeniem tego zjawiska i alg absorbowanych z otoczenia.
      Kerney wyjaśnia, że w jajach glony zapewniają rozwijającym się embrionom tlen, a z kolei algi korzystają z wydalin płodu, w których znajduje się sporo potrzebnego roślinom azotu. Same ambystomy plamiste rzadko pojawiają się na powierzchni (przez większość czasu ukrywają się w korzeniach drzew, pod kamieniami itp., a wiosną mniej więcej o tej porze kończy się ich hibernacja), ale galaretowate pakiety jaj umieszczają blisko powierzchni wody. Trudno więc sobie wyobrazić lepsze warunki do życia dla glonów.
      Akademicy z Dalhousie University oraz Indiana University posłużyli się mikroskopem fluorescencyjnym. Dzięki temu mogli stwierdzić, że pigmenty glonów jarzyły się wewnątrz komórek płaza po oświetleniu światłem o określonej długości fali. Przed tym odkryciem naukowcy sądzili, że rośliny nie mogą żyć wewnątrz komórek kręgowców. Płazy, ptaki czy ssaki mają przecież wysoce wyspecjalizowany układ odpornościowy, który powinien zwalczać obce organizmy. Tymczasem algi naprawdę opanowują tkanki kręgowców.
      Pierwszy przypadek endosymbiozy eukariotycznych glonów w komórkach kręgowców sugeruje, że być może to wcale nie jest odosobniony przypadek. Ponieważ u innych ambystom, salamander i żab w jajach także występują algi, niewykluczone, że i u nich nie ograniczają się one wyłącznie do osadzania na osłonie czy infiltrowania przez nią, trafiając ostatecznie do komórek embrionu.
      Związek jaj ambystomy z glonami zaobserwowano ponad 100 lat temu. Zyskał on formalną nazwę w 1927 r., gdy Lambert Printz nadał algom wiele mówiącą nazwę Oophilia amblystoma (nazwę rodzaju można przetłumaczyć jako "kochający jaja"). Natury symbiozy nie poznano jednak aż do lat 80. ubiegłego wieku, gdy wykazano eksperymentalnie, że pod nieobecność glonów embriony nie rozwijają się tak szybko. Podobnie było zresztą z algami. Bez płodów ambystom do towarzystwa rosły wolniej.
      Kanadyjsko-amerykański zespół skorzystał z techniki zwanej fluorescencyjną hybrydyzacją in situ (FISH od ang. fluorescence in situ hybridization). Pozwoliła ona na wykrycie sekwencji 18S rRNA unikatowej dla Oophilia za pomocą specjalnych fluorescencyjnych sond.
    • By KopalniaWiedzy.pl
      Biolodzy odkryli na głębokości ponad 200 m dwa typy prehistorycznych glonów, które nazwali żywymi skamieniałościami. Wg nich, mogły powstać ze wspólnego przodka wszystkich zielonych roślin ok. 1 mld lat temu.
      Algi te występują w morzu na stosunkowo dużych głębokościach – 210 m, a to dużo jak na fotosyntetyzujący organizm. Można je spotkać w płytszych wodach, ale zazwyczaj pod rafami, gdzie dociera niewiele światła. Wydaje się, że glony mają specjalny chlorofil, który pozwala im wykorzystywać światło z niebieskiego zakresu długości fal – opowiada prof. Frederick Zechman z Uniwersytetu Stanowego Kalifornii, który nawiązał współpracę z innymi Amerykanami i Belgami. Razem pobierali próbki skategoryzowanych już wcześniej roślin z rodzajów Palmophyllum i Verdigellas (Palmophyllum z wód w okolicach Nowej Zelandii, a Verdigellas z zachodniej części Atlantyku).
      Zespół Zechmana jako pierwszy przeprowadził badania genetyczne glonów: analizowano gen tworzącego małą podjednostkę rybosomu 18S rRNA oraz dwa geny chloroplastów (atpB i rbcL). To wtedy okazało się, z jak starym znaleziskiem mamy do czynienia. Ustalono, że algi są co prawda wielokomórkowe, ale pojedyncze komórki wydają się ze sobą słabo powiązane. Tworzą one galaretowatą macierz, przyjmującą kształt m.in. łodygi.
      Przed zakończeniem analiz biolodzy sądzili, że nowo odkryte glony będą należeć do zielenic (Chlorophyta) lub do linii, z której wyodrębniły się ramienicowate i w końcu rośliny lądowe (telomowe). Niestety, nowe algi nie pasowały do żadnego kladu - zespołu organizmów mających wspólnego przodka – co sugerowało, że reprezentują bardzo starą grupę zielonych roślin. Wg Zechmana, ze względu na odmienność glony powinno się zaliczyć do ich własnego rzędu Palmophyllales.
      Naukowcy sądzą, że prehistoryczne algi, stanowiące roślinny odpowiednik innych żywych skamieniałości krokodyli, zawdzięczają swój sukces zamieszkiwanemu środowisku. Na tak dużych głębokościach temperatura zmienia się w bardziej ograniczonym zakresie, o mniejszym stresie związanym z działaniem fal czy roślinożercami nie wspominając.
    • By KopalniaWiedzy.pl
      Chlorofil - związek chemiczny pozwalający roślinom (a także glonom i niektórym bakteriom) na czerpanie energii w procesie fotosyntezy można uznać za podstawę istnienia życia na Ziemi w ogóle. Dlatego odkrycie nowego, nieznanego typu chlorofilu jest wydarzeniem w biologii.
      Dotychczas znano cztery rodzaje chlorofilu. Najbardziej rozpowszechnione są chlorofil A i B, znajdowane u roślin zielonych. Oba te typy chlorofilu pochłaniają głównie światło widzialne w zakresie niebieskim (około 465 nanometrów) oraz żółtopomarańczowym/czerwonym (665 nm), odbijając światło zielone (stąd bierze się zielony dla nas kolor roślinności). Chlorofil C i D znajdowany jest u mniej licznych organizmów, głównie u glonów. Rodzaj C pochłania światło podobnie do A i B, z trochę przesuniętym spektrum, zaś D głównie czerwone (697 nm).
      Nową odmianę chlorofilu, nazwaną „F", odkryto w stromatolitowych skałach basenu Hamelin, w Zatoce Rekina w zachodniej Australii. Ponieważ znaleziono go w ekstraktach z osadów dennych, nie jest jeszcze pewne, jakie organizmy go wytwarzają, wg Mina Chena, biologa molekularnego na University of Sydney, który dokonał odkrycia, najbardziej prawdopodobnym ich twórcą są nitkowate cyjanobakterie, czyli sinice.
      Największą jednak sensacją jest to, że chlorofil F absorbuje światło o długości nieużytkowanej przez inne organizmy. Wykorzystuje on promieniowanie tuż spoza czerwonego końca widma widzialnego, czyli bliską podczerwień. To zmienia całkowicie pojęcie o możliwościach chlorofilu. Co ciekawe, budową niewiele różni się od znanych odmian chlorofilu i prawdopodobnie jest wykorzystywany przez organizmy żyjące nisko, w miejscach, gdzie pozostałe spektrum światła jest już pochłonięte przez konkurencję.
      Naukowcy snują już plany praktycznego wykorzystania odkrycia. Chcą przy pomocy inżynierii genetycznej wprowadzić chlorofil F do wybranych gatunków glonów, tak udoskonalone, absorbowałyby większą część spektrum światła i były znacznie wydajniejszymi producentami na przykład biopaliw.
    • By KopalniaWiedzy.pl
      Stegastes nigricans, ryby z rodziny garbikowatych, regularnie pielą swoje podwodne ogródki. Wyrywają to, co uważają za chwasty, stymulując w ten sposób wzrost ulubionego pokarmu – polisyfonii, glonu morskiego z rzędu Ceramiales z nitkowatą, rozgałęzioną plechą.
      Hiroki Hata z Ehime University i zespół badali ogrodnicze nawyki ryb (po raz pierwszy opisali je już w 2006 roku). Analizowaliśmy 320 terytoriów 18 gatunków garbików i przyglądaliśmy się glonom z każdego rybiego poletka na Wielkiej Rafie Koralowej oraz rafach Egiptu, Kenii, Mauritiusa, Malediwów, Tajlandii, Borneo i Okinawy. Odkryliśmy, że choć rodzaj uprawianego glonu zmieniał się w obrębie zachodniego Oceanu Indyjskiego, intensywne rolnictwo w wykonaniu ryb występowało w całym tym rejonie.
      Garbiki nie dysponują narządami, które pozwalałyby im miażdżyć celulozowe włókna, nie mają też enzymów trawiennych potrzebnych do rozłożenia wielu gatunków glonów. Niestety, krasnorost polisyfonia w dużej mierze przegrywa konkurencję z niejadalnymi dla nich algami, dlatego ryby muszą pomóc Polysiphonia i sobie, przeprowadzając pielenie. S. nigricans i polisyfonię łączą związki o charakterze mutualizmu. W tym przypadku mamy do czynienia z formą symbiozy dwóch gatunków, która jest korzystna dla obu stron ze względu na odżywianie i ochronę.
×
×
  • Create New...