Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Urządzenie zmierzy lepkość keczupu i kosmetyków

Recommended Posts

Inżynierowie skonstruowali wiskozymetr, czyli urządzenie do badania lepkości różnych cieczy, np. keczupu i kosmetyków, które można włączyć do linii produkcyjnej. Jak tłumaczą wynalazcy z Uniwersytetu w Sheffield, wdrożona technologia pozwala monitorować w czasie rzeczywistym, jak lepkie składniki cieczy zmieniają się w trakcie poszczególnych etapów wytwarzania. Dzięki temu można zachować wszystkie pożądane parametry.

Zakłady wytwarzające ciekłe produkty muszą wiedzieć, jak ciecze będą się zachowywać w różnych warunkach, ponieważ te rozmaite zachowania mogą wpłynąć na teksturę, smak, a nawet zapach produktu - tłumaczy dr Julia Rees.

Lepkość większości cieczy zmienia się w różnych warunkach i projektanci często posługują się skomplikowanymi równaniami, które pozwalają wnioskować o charakterze tych zmian. Z nowo opracowanym systemem czujników, przez który ciecz po prostu przepływa, zadanie staje się o wiele prostsze. Na podstawie danych z czujników urządzenie wylicza zakres prawdopodobnych zachowań.

Firmy pracujące nad nowymi produktami będą mogły włączyć urządzenie do procesu, co oznacza, że nie trzeba będzie pobierać próbek i przeprowadzać na nich kosztownych testów laboratoryjnych. Pozwoli to obniżyć koszty i zwiększyć wydajność produkcji.

System będzie można skalować. Twórcy wspominają nawet o wersjach dla mikrochipów z kanalikami o średnicy ludzkiego włosa. Takie rozwiązanie sprawdzi się, gdy producenci czy naukowcy będą dysponować minimalną ilością cieczy (np. z próbek biologicznych).

Ponieważ mikroreometr pracuje w czasie rzeczywistym, gdy zostaną wykryte wady produkcyjnie, nie będzie się marnować czasu, materiałów ani energii - podkreśla współpracownik Rees prof. Will Zimmerman.

Zespół Rees stworzył na razie laboratoryjny prototyp. Trwają prace nad ulepszeniem technologii i uzyskaniem prototypu projektowego.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Co robią zmiennocieplne komary, by nie przegrzać się w wyniku spożycia dużych ilości gorącej krwi gatunków stałocieplnych? Ronią kilka kropli cennej cieczy. Nie tylko żywią się więc krwią, ale i urządzają sobie krwawe orzeźwiające kąpiele.
      Podczas żerowania na ciepłokrwistym gospodarzu, np. człowieku, komary połykają w krótkim czasie duże ilości gorącej krwi. Zamierzaliśmy ustalić, do jakiego stopnia owady narażają się na ryzyko przegrzania - opowiada Claudio Lazzari z Université François Rabelais. I czemu pozbywają się świeżej krwi, która jest cennym i niebezpiecznym w pozyskiwaniu pokarmem. Intuicyjnie naukowcy z Tours zakładali, że chodzi o chłodzenie, ponieważ choć ciepłota ciała owadów zależy od temperatury otoczenia, to np. pszczoły i mszyce potrafią ją kontrolować za pomocą kropli nektaru czy soku roślin.
      Lazzari i Chloé Lahondère posłużyli się termowizorem. Dzięki temu mogli zaobserwować różnice w temperaturze części ciała komara w czasie żerowania. Okazało się, że temperatura głowy była niemal taka sama jak temperatura jedzonej krwi, jednak pozostałe części owada miały właściwie temperaturę otoczenia. Gdy komary pożywiały się wodą z cukrem, nie zaobserwowano ani różnic w temperaturze (heterotermii), ani chłodzenia wyparnego.
      Blokowanie lub opóźnianie sekrecji cieczy może mieć dwojakiego rodzaju wpływ na fizjologię komarów [autorzy raportu wspominają o równowadze wodnej i termicznej]. Pośrednio oddziałuje to na mikroorganizmy [zarodźce] przenoszone przez komary; chodzi o modyfikację środowiska termicznego, z jakim się stykają. Chronione są zatem owady oraz pasożyty (pierwotniaki) i symbionty.
      Francuzi podkreślają, że owady żywiące się krwią znajdują się w wyjątkowej sytuacji, bo przeżywają stres cieplny przy każdym posiłku. Podczas gdy inne owady tylko od czasu do czasu muszą się przenieść w chłodniejsze miejsce czy dostosować utratę wody. U pożywiających się krwią komarów krople cieczy pojawiają się i są utrzymywane w tylnej części odwłoka.
    • By KopalniaWiedzy.pl
      Takie rozwiązanie to marzenie wielu lekarzy i laborantów: mikroigły, w których pustym wnętrzu znajdują się różne elektrochemiczne czujniki. W ten sposób można na bieżąco monitorować przez dłuższy czas chemię całego organizmu, w tym poziom cukru.
      Wewnątrz mikroigieł umieściliśmy kanaliki z szeregiem elektrochemicznych czujników, które można wykorzystać do wykrywania specyficznych cząsteczek albo wartości pH - wyjaśnia dr Roger Narayan z Uniwersytetu Stanowego Karoliny Północnej.
      Stosowane obecnie technologie bazują na pobieraniu próbek i badaniu ich. Tutaj badanie ma charakter ciągły, pozwalając np. na monitorowanie poziomu cukru we krwi diabetyka. Jak opowiada Narayan, w mikroigłach przynamniej jeden z wymiarów nie przekracza 1 milimetra.
      Pomysł jest taki, by dostosowane do indywidualnych potrzeb macierze czujników mikroigłowych wmontowywać w urządzenia przenośne, np. zegarki, znajdując dzięki temu odpowiedź na specyficzne pytania medyczne lub badawcze. Warto też zaznaczyć, że mikroigły są bezbolesne.
      Naukowcy z Uniwersytetu Stanowego Karoliny Północnej, Sandia National Laboratories i Uniwersytetu Kalifornijskiego w San Diego zbudowali na próbę mikroigłę z umieszczonymi wewnątrz czujnikami do pomiaru pH, glukozy i kwasu mlekowego (zastosowano detekcję amperometryczną). Z tym ostatnim wiążą sportowe nadzieje, wspominając, że za jego pomocą dałoby się określić stężenie metabolitu w mięśniach nie przed lub po wysiłku, ale w jego trakcie.
      Kiedy w ramach eksperymentu akademicy zmodyfikowali materiał za pomocą komórkoopornej powłoki (Lipidure), zahamowano przyleganie makrofagów. W ciągu 48 godzin nie doszło do rozwarstwienia powłoki.
    • By KopalniaWiedzy.pl
      Płynne perły to spełnienie marzeń pewnego szefa kuchni, przedstawiciela gastronomii molekularnej, który chcąc zamknąć smaki w osobnych przedziałach, poprosił o pomoc fizyków. Odpowiadając na jego zapotrzebowanie, naukowcy stworzyli pokryte elastyczną błoną hydrożelową kapsułki z płynnym rdzeniem. Co ważne, pomysł ten przyda się nie tylko w kuchni, ale i podczas leczenia nowotworów.
      Nicholas Bremond i jego zespół z ESPCI ParisTech porównują swoje dzieło do rybiej ikry. Na początku kroplę cieczy powleka się cienką warstwą kwasu alginowego (wchodzi on w skład ścian komórkowych wielu alg i trawy morskiej), która ulega zżelowaniu po zanurzeniu w kąpieli z roztworu chlorku wapnia z dodatkiem detergentu.
      Błonka jest bardzo cienka - jej grubość mierzy się w mikrometrach. Francuzi podkreślają, że by powstał film, przed zżelowaniem należy wyeliminować mieszanie. Bez detergentu powłoka także miałaby postać żelu, ale szybko zlałaby się z zawartością kapsułki. Substancja powierzchniowo czynna prowadzi do czasowego utwardzenia, które ogranicza niestabilność związaną ze ścinaniem podczas zderzenia.
      Bremond i inni uważają, że w hydrożelowej powłoce da się zamknąć dowolną ciecz. Dzięki temu prostemu zabiegowi można by badać wzrost i zdolność przeżycia mikroorganizmów czy komórek nowotworowych w różnych trójwymiarowych środowiskach. Ponieważ błona jest przepuszczalna, do wnętrza dostarczano by np. leki.
    • By KopalniaWiedzy.pl
      TSMC ogłosił, że jego najnowszy proces produkcyjny, 28HP (od High Performance), jest wykorzystywany w produkcji na masową skalę. Powstaną w nim procesory graficzne najważniejszych klientów TSMC - czyli AMD i Nvidii.
      28HP to 28-nanometrowy proces produkcyjny. Wraz z nim TSMC po raz pierwszy używa metalowej bramki o wysokiej stałej dielektrycznej. Użycie materiału o wysokiej stałej dielektrycznej w miejsce tradycyjnego dwutlenku krzemu pozwala na znaczące zmniejszenie wycieków prądu, dzięki czemu możliwe jest  obniżenie napięcia przy jakim pracują układy i, co za tym idzie, zwiększenie częstotliwości taktowania. Jak twierdzą źródła w TSMC proces 28HP sprawuje się tak dobrze, że częstotliwość taktowania układów może być aż o 45% wyższa niż w przypadku wcześniejszego procesu technologicznego.
      Jeszcze w bieżącym roku na rynek trafią wykonane w nowej technologii GPU AMD o nazwach kodowych Southern Islands i Tahiti. Natomiast w lutym zadebiutuje Kepler Nvidii.
    • By KopalniaWiedzy.pl
      Wzorując się na liściach pułapkowych dzbaneczników, inżynierowie stworzyli materiał niezwilżalny w stosunku do niemal każdej cieczy, także olejów i krwi. Co więcej, sprawdza się on nawet w ciężkich warunkach, tj. przy wysokim ciśnieniu czy temperaturach zamarzania.
      Wcześniej naukowcy koncentrowali się na liściach lotosu, które zainspirowały serię materiałów superhydrofobowych. Nie sprawdzały się one jednak w przypadku cieczy organicznych lub złożonych, które mają niższe napięcie powierzchniowe niż woda i pod wpływem lekkiego nacisku zaczynają wsiąkać w powierzchnię. Sytuacja nie była patowa, wystarczyło bowiem poszukać innego przykładu z natury, by z łatwością rozwiązać ten problem. Jak wyjaśnia prof. Joanna Aizenberg ze Szkoły Inżynierii i Nauk Stosowanych Uniwersytetu Harvarda, na liściach pułapkowych dzbaneczników znajdują się drobne guzki utrzymujące na miejscu warstwę wody, która oddziałuje na cząsteczki oleju (chodzi o oddziaływania między cząsteczkami polarnymi i niepolarnymi). W takiej sytuacji tłuszcze pokrywające stopy owadów nie na wiele się zdają i ofiara wpada wprost do soków trawiennych drapieżnej rośliny.
      Zespół z Harvardu uważa, że nowy materiał znajdzie zastosowanie w transporcie paliw, technologiach zapobiegania oblodzeniu i porastaniu kadłubów statków czy w procedurach związanych z wykorzystaniem cieczy biomedycznych (np. w cewnikach). Zainspirowani przez dzbaneczniki, opracowaliśmy nową powłokę, która przewyższa swoje naturalne i syntetyczne odpowiedniki, oferując proste i wszechstronne rozwiązanie w zakresie repelencji cieczy i ciał stałych – podkreśla Aizenberg.
      W przypadku lotosu wodoodporność jest skutkiem specyficznego ukształtowania powierzchni liści. Tworzą się poduszki powietrzne, na których skrapla się woda. Efekt lotosu zanika jednak, gdy powierzchnia jest uszkodzona albo działają ekstremalne warunki. Wtedy krople przylegają do niej albo wsiąkają, zamiast spływać. Poza tym okazało się, że wyprodukowanie materiałów wzorowanych na lotosie jest drogie i trudne.
      Dzbaneczniki nie bazują na wypełnionych powietrzem nanozadziorach. Na powierzchni liścia pułapkowego tworzy się po prostu warstwa wody. Tak-Sing Wong z laboratorium Aizenberg porównuje sytuację owada do samochodu wpadającego w poślizg na drodze pokrytej cienką warstewką deszczówki. Biorąc przykład z rośliny, Amerykanie zaprojektowali nanoporowaty materiał, pokryty cieczą spełniającą funkcję smaru. Nadano mu nazwę SLIPS (od Slippery Liquid-Infused Porous Surfaces). SLIPS wykazuje praktycznie zerową retencję, gdyż potrzeba bardzo drobnego przechylenia, by ciecz lub ciało stałe zaczęło się ześlizgiwać i odpadło od powierzchni – twierdzi Aizenberg. Ciecz w takiej roli ma jeszcze jeden duży plus. Jest właściwie [idealnie] gładka i wolna od defektów. Nawet gdy uszkodziliśmy próbkę, rysując ją nożem, powierzchnia niemal natychmiast się naprawiała i właściwości "odstraszające" zostały zachowane. W odróżnieniu od lotosu, SLIPS można wyprodukować w wersji przezroczystej, przez co jest on idealny do celów optycznych i w aplikacjach samoczyszczących – dodaje Wong.
      Akademicy ujawniają, że efekt bliski wyeliminowania tarcia utrzymuje się także w trudnych warunkach: przy wysokim ciśnieniu (675 atmosfer, co odpowiada zanurzeniu na głębokość 7 km), wilgotności i niskich temperaturach. Zespół przeprowadził eksperyment na zewnątrz podczas burzy śnieżnej i SLIPS zapobiegał osadzaniu lodu. Do produkcji SLIPS można wykorzystać jakikolwiek porowaty materiał. Nawet mrówki się na nim ślizgają, całkiem jak na naturalnym wzorcu z dzbanecznika. Obecnie trwa proces patentowania wynalazku.
×
×
  • Create New...