Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Otyłość zmniejsza skuteczność szczepienia na grypę

Recommended Posts

Otyłość zmniejsza skuteczność szczepionek przeciw grypie. Naukowcy ze Szkoły Medycznej Uniwersytetu Północnej Karoliny uważają, że osoby z nadmierną wagą ciała mogą potrzebować dodatkowej ochrony (International Journal of Obesity).

Wyniki zespołu dr Melindy Beck pozwalają wyjaśnić zjawisko, które po raz pierwszy zaobserwowano przed 3 laty w związku z zakażeniami wirusem ludzkiej grypy typu H1N1/09. Okazało się wtedy, że otyłość wiąże się z upośledzoną reakcją odpornościową na szczepionkę.

Wyniki sugerują, że w sezonie ekspozycji na wirusa grypy ludzie z nadwagą i otyłością mogą chorować na grypę z większym prawdopodobieństwem niż osoby ze zdrową wagą. Wcześniejsze badania sugerowały możliwość, że otyłość upośledza zdolność ludzkiego organizmu do zwalczania wirusa grypy, teraz wyjaśniono, na jakiej zasadzie się tak dzieje.

Zespół z Północnej Karoliny jako pierwszy poinformował, że w porównaniu do badanych z wagą mieszczącą się w granicach normy, u otyłych jednostek wkrótce po zaszczepieniu następuje znaczący spadek poziomu przeciwciał. Co więcej, u cięższych osób występuje nieprawidłowa reakcja limfocytów T cytotoksycznych, które uśmiercają komórki prezentujące uczulający dany limfocyt antygen i regulują komórkową odpowiedź immunologiczną.

Beck i inni badali pacjentów, którym pod koniec 2009 r. podano inaktywowaną szczepionkę zawierającą niezakaźne wirusy. U wszystkich w pierwszym miesiącu od iniekcji pojawiły się przeciwciała, ale z czasem u osób z nadwagą i otyłych ich miano we krwi spadało szybciej niż u ludzi z prawidłową wagą. U ok. 50% otyłych osób po 11 miesiącach od szczepienia następował, w porównaniu do miesiąca od szczepienia, 4-krotny spadek poziomu przeciwciał. Identyczny spadek miana przeciwciał odnotowano u mniej niż 25% szczupłych badanych.

Gdy po 11 miesiącach od zaszczepienia próbki krwi wystawiano na oddziaływanie wirusa grypy, u ok. 75% ludzi ze zdrową wagą w limfocytach Tc nadal zachodziła ekspresja interferonu-γ (cytokiny krytycznej m.in. dla odporności nabytej przeciw wirusom). Wśród otyłych ochotników tylko 25% wytwarzało to białko.

Jeśli miano przeciwciał nie jest podtrzymywane, a działanie limfocytów pamięci pozostaje upośledzone, otyłe jednostki są bardziej narażone na zachorowanie na grypę - wyjaśnia dr Patricia Sheridan.

Heather Paich, doktorantka z laboratorium Beck, dodaje, że osoby z nadwagą i otyłością z większym prawdopodobieństwem ciężej chorują, a także przechodzą więcej powikłań.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy z MIT, Massachusetts General Hospital i Uniwersytetu Harvarda pracują nad uniwersalną szczepionką na grypę, która byłaby skuteczna przeciwko każdemu szczepowi. Na łamach Cell naukowcy opisują szczepionkę wywołującą reakcję układu immunologicznego przeciwko pewnemu fragmentowi proteiny wirusa grypy, który rzadko ulega mutacjom. Zwykle układ odpornościowy nie bierze na cel tego fragmentu.
      Nowa szczepionka składa się z nanocząstek pokrytych proteinami wirusa grypy. Podczas badań na myszach, które zmanipulowano genetycznie tak, by ich układ odpornościowy przypominał układ odpornościowy człowieka, wykazano, że szczepionka powoduje atak układu odpornościowego na wspomniany fragment proteiny. To daje nadzieję, że szczepionka taka mogłaby być skuteczna przeciwko każdemu szczepowi grypy.
      Repertuar przeciwciał jest niemal nieskończenie zróżnicowany, dzięki czemu układ odpornościowy może dopasować się do każdego antygenu. Jednak cała „przestrzeń antygenów” jest nierównomiernie sprawdzana, przez co niektóre patogeny, jak np. wirus grypy są w stanie opracować złożone strategie immunodominancji, przez co układ odpornościowy nie zwraca uwagi na tego typu pięty achillesowe wirusa, stwierdzają naukowcy.
      Najpierw uczeni stworzyli model komputerowy, który pozwolił zaprojektować im techniki pokonania strategii wirusa, polegającej na „odwracaniu uwagi” układu odpornościowego od jego „pięt achillesowych”. Następnie przystąpili do testów na odpowiednio zmodyfikowanych myszach.
      Uzyskane przez nas wyniki są o tyle ekscytujące, że jest to mały krok w kierunku stworzenia szczepionki na grypę, którą będzie można przyjąć raz lub kilka razy i zyskać odporność zarówno na sezonowe, jak i pandemiczne szczepy grypy, mówi profesor Arup K. Chakraborty z MIT.
      Większość szczepionek przeciwko grypie wykorzystuje nieaktywne wirusy grypy. Wirusy grypy wykorzystują hemaglutyninę (HA) do przyłączania się do powierzchni komórki. Szczepionki powodują, że układ odpornościowy rozpoznaje hemaglutyninę i wytwarza przeciwciała, które biorą ją na cel. Jednak przeciwciała te niemal zawsze łączą się z przednią częścią, główką, hemaglutuniny. A jest to część, która najszybciej ulega mutacją. Z kolei w tylnej części HA znajdują się fragmenty, które mutują bardzo rzadko.
      Nie rozumiemy jeszcze całości, ale z jakiegoś powodu układ odpornościowy nie potrafi skutecznie wyszukiwać tych nieulegających mutacjom części proteiny, mówi profesor Daniel Lingwood z Harvard Medical School. Dlatego też naukowcy poszukują strategii, które pozwolą na zwrócenie uwagi układu odpornościowego na rzadko zmieniające się fragmenty HA.
      Jednym z czynników, dla których układ odpornościowy bierze za cel przednią część HA, a nie tylną, jest prawdopodobnie fakt, że wirus grypy jest gęsto upakowany hemaglutyniną. Tak gęsto, że przeciwciałom znacznie łatwiej jest łączyć się z „główką” HA, niż przecisnąć się i uzyskać dostęp do tylnej części. Wysunęliśmy hipotezę, że kluczem do uchronienia przed przeciwciałami wrażliwych części i do przetrwania wirusa jest geometria jego powierzchni, wyjaśnia doktor Assaf Amitai z MIT.
      Najpierw więc badali wpływ geometrii wirusa na immunodominację za pomocą molekularnej symulacji dynamicznej. Następnie modelowali proces zwany dojrzewaniem powinowactwa przeciwciał. To proces, który zachodzi po tym, gdy komórka B napotka na wirusa i określa, które przeciwciała będą decydujące w odpowiedzi immunologicznej.
      Każdy z receptorów limfocytu B łączy się z inną proteiną wirusa. Gdy konkretny receptor konkretnego limfocytu połączy się silnie z HA, limfocyt B zostaje aktywowany i szybko się namnaża. W procesie tym limfocyt B ulega mutacjom, dzięki czemu niektóre jego receptory jeszcze silniej wiążą się z HA. Następnie te limfocyty, które najsilniej powiązały się z HA przeżywają, a pozostałe, giną. W ten sposób po pewnym czasie powstaje duża populacja limfocytów B, które bardzo silnie wiążą się z HA. Z czasem przeciwciała te coraz lepiej i lepiej biorą na cel konkretny antygen, mówi Charkaborty.
      Modelowanie komputerowe wykazało pewną słabość tego procesu. Okazało się, że gdy podamy człowiekowi typową szczepionkę przeciwko grypie, te limfocyty B, które potrafią silnie połączyć się z tylną częścią HA są podczas procesu dojrzewania powinowactwa w gorszej sytuacji, niż limfocyty wiążące się silnie z główką HA. Po prostu dotarcie do tylnej części hemaglutyniny jest trudniejsze. Do modelu dodano więc symulację działania szczepionki, która jest właśnie opracowywana przez NIH i znajduje się w I fazie badań klinicznych. W szczepionce tej wykorzystano wirusa z rzadziej upakowanymi HA na powierzchni. Okazało się, że wówczas limfocyty B docierające do tylnej części HA radzą sobie znacznie lepiej i dominują pod koniec procesu dojrzewania powinowactwa.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Osoby urodzone pod koniec lat 60. i w latach 70. ubiegłego wieku mogą znajdować się w stanie ciągłego narażenia na infekcję wirusem grypy H3N2, wynika z badań przeprowadzonych na Perelman School of Medicine University of Pennsylvania. Dzieje się tak, gdyż co prawda ich przeciwciała łącza się z wirusem H3N2, ale nie zapobiegają infekcji. Odkryliśmy, że u ludzi w różnym wieku przeciwciała przeciwko H3N2 różnie działają, mówi profesor Scott Hensley.
      Nasze badania wykazały, że infekcje, jakie przeszliśmy w dzieciństwie, mogą wytworzyć odporność na całe życie, a odporność ta decyduje o tym, jak w ciągu życia nasze organizmy reagują na antygenowo odległe szczepy tego samego wirusa, dodaje.
      Większość ludzi przechodzi infekcję grypą nie później niż do 4. roku życia. I to zachorowaniem może nam nadać silną odporność na całe życie. Szczep H3N2 zaczął krążyć wśród ludzi w 1968 roku i w ciągu ostatnich 5 dekad znacząco się zmienił. Na podstawie roku urodzenia można z bardzo dużym prawdopodobieństwem stwierdzić, z jakim szczepem H3N2 się zetknęliśmy w dzieciństwie.
      Naukowcy z University of Pennsylvania przeprowadzili badania przeciwciał w krwi pobranej w sezonie letnim, przed sezonem grypowym z lat 2017/2018. Przebadano krew 140 dzieci w wieku o 1 do 17 lat oraz 212 dorosłych w wieku od 18 do 90 lat. Najpierw sprawdzono samą reakcję przeciwciał na obecność różnych szczepów H3N2, następnie zaś zmierzono poziom przeciwciał, które neutralizowały i tych, które nie neutralizowały wirusa. Przeciwciała, które neutralizują, pomagają zapobiec zachorowaniu, natomiast przeciwciała, które nie neutralizują, pomagają już po infekcji.
      Okazało się, że w krwi osób w wieku 3-10 lat występowało najwięcej przeciwciał neutralizujących współcześnie występujące szczepy H3N2. U większości osób w średnim wieku, urodzonych pod koniec lat 60. i w latach 70. występowały przeciwciała, które nie neutralizowały wirusa, zatem nie zapobiegały zachorowaniu. Większość osób urodzonych w tamtym czasie zyskało odporność na wirusy H3N2, które bardzo różniły się od współczesnych szczepów. U takich osób, gdy dojdzie do kontaktu z wirusem, powstają przeciwciała działające na te regiony współczesnych szczepów, które zostały odziedziczone po starszych szczepach. A takie przeciwciała zwykle nie zapobiegają zachorowaniu, stwierdzają naukowcy.
      Uczeni nie wykluczają, że to właśnie obecność u osób w średnim wieku dużej liczby nieneutralizujących przeciwciał jest przyczyną, dla której H3N2 wciąż krąży w ludzkiej populacji. Ponadto ich badania mogą też wyjaśniać, dlaczego w sezonie 2017/2018 doszło do niezwykle dużej liczby zachorowań wśród osób w średnim wieku w porównaniu z zachorowaniami wśród dzieci i młodych dorosłych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zaawansowane techniki sekwencjonowania pozwoliły naukowcom z Kanady, USA i Australii na rekonstrukcję genomu wirusów z „zestawów szczepionkowych” używanych w czasie amerykańskiej wojny secesyjnej. Zrozumienie historii oraz ewolucji wirusów oraz sposobów, w jakie wirusy te działały jako szczepionki jest bardzo ważne w czasach współczesnych, mówi genetyk ewolucyjny Hendrik Poinar z kanadyjskiego McMaster University.
      Ospa prawdziwa to jedna z najbardziej zabójczych chorób, które trapiły ludzkość. Zabijała około 30% zarażonych, a ci, którym udało się przeżyć, często wychodzili z choroby jako osoby niepełnosprawne. Przed około 40 laty ospę prawdziwą udało się wyeliminować. Stała się ona pierwszą, i jedyną jak dotąd, chorobą atakującą człowieka, którą poddano udanej eradykacji. Pomimo tego olbrzymiego sukcesu niewiele wiemy o pochodzeniu i zróżnicowaniu wirusów używanych w szczepionkach.
      Przed XX wiekiem metody wytwarzania, źródła i pochodzenie szczepionek oraz wirusów nie były ustandaryzowane. To zaś oznacza, że przez większość historii walki z tą chorobą nie wiemy, jakie szczepy były używane do jej zwalczania, stwierdzają autorzy najnowszych badań.
      Idea masowych szczepień pojawiła się w 1796 roku, gdy angielski lekarz Edward Jenner zaobserwował, że kobiety dojące krowy, które zaraziły się łagodną krowianką – chorobą podobną do ospy, ale atakującą bydło – wydawały się chronione przed epidemiami ospy. To Jenner wpadł na pomysł, by ludzi celowo zarażać krowianką i chronić w ten sposób przed śmiertelnie groźną ospą.
      W 1939 roku okazało się, że szczep ospy (VACV) używany w szczepionkach w XX wieku jest inny niż szczep krowianki (CPXV) i to on był dominującym szczepem używanym do walki z ospą. To właśnie VACV pozwolił na wyeliminowanie tej choroby. Mimo tego, że jest on tak ważny dla historii ludzkości, nie wiemy kiedy zaczęto go stosować, ani skąd pochodzi.
      Do obecnych badań wykorzystano „zestawy szczepionkowe” z czasów wojny secesyjnej przechowywane w Mutter Museum of the College of Physicians w Filadelfii. Zestawy takie składają się ze skalpela, niewielkich szklanych płytek służących do mieszania płynów pobranych z pęcherzy osób zarażonych oraz cynowych pudełek z fragmentami strupów od chorych.
      Badania wykazały, że już w latach 60. i 70. XIX wieku w Filadelfii używano szczepu VACV. „Szczepienie” odbywało się w ten sposób, że na celowo zranioną skórę nakładano materiał biologiczny od osoby wcześniej zarażonej VACV.
      Autorzy badań podsumowują, że już wówczas produkcja szczepionek była procesem ograniczającym się wyłącznie do ludzi. Materiał do szczepień był wytwarzany w ludzkim organizmie i przenoszony bezpośrednio od dawcy do biorcy. Proces ten w kolejnych dekadach uległ zmianie, gdyż pojawiły się obawy związane z ryzykiem rozprzestrzeniania w ten sposób innych chorób oraz opracowano techniki komercyjnej przemysłowej produkcji szczepionek, w której wykorzystywano zwierzęta.
      Nie budząca wątpliwości identyfikacja i rekonstrukcja niemal całego genomu VACV z zestawów do szczepień, które były wykorzystywane w czasie wojny secesyjnej, jasno pokazuje, że szczepy te krążyły wśród ludzi za pośrednictwem lekarzy jeszcze przed XX wiekiem, podsumowują autorzy badań.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Firma Moderna poinformowała, że otrzymała od Agencji ds. Żywności i Leków (FDA) zgodę na rozpoczęcie II fazy badań klinicznych nad szczepionką przeciwko COVID-19. mRNA-1273 to pierwsza szczepionka, która weszła w fazę testów klinicznych. Rozpoczęły się one, o czym informowaliśmy, 16 marca.
      Zgodnie z tym, co pisaliśmy wcześniej, I faza badań klinicznych trwa około 3 miesięcy. Moderna zapowiada, że fazę II rozpocznie jeszcze w II kwartale bieżącego roku i ma nadzieję, że w przyszłym roku otrzyma zgodę na wprowadzenie szczepionki na rynek.
      Wniosek o zgodę na rozpoczęcie II fazy badań mRNA-1273 został złożony 27 kwietnia. Podczas tej fazy będzie oceniane bezpieczeństwo, reaktogenność oraz immunogenność szczepionki. Termin reaktogenność to zdolność szczepionki do wywołania spodziewanych reakcji ubocznych. Z kolei immunogenność to zdolność do wywołania swoistej odpowiedzi odpornościowej.
      Badani otrzymają dwie dawki szczepionki w odstępie 28 dni. Każdy z ochotników otrzyma albo dwukrotnie placebo, albo dwukrotnie 50 µg szczepionki, albo dwukrotnie 250 µg szczepionki. Moderna chce zaangażować do badań 600 zdrowych dorosłych w wieku od 18 do 55 lat (300 osób) oraz powyżej 55 lat (300 osób). Zdrowie ochotników będzie badane przez 12 miesięcy od otrzymania drugiej dawki. Tymczasem FDA kończy prace nad protokołem III fazy badań klinicznych mRNA-1273.
      Szczepionka „instruuje” komórki gospodarza, by zachodziła w nich ekspresja glikoproteiny powierzchniowej S (ang. spike protein); białko S pozwala koronawirusowi na wniknięcie do komórki gospodarza. W tym przypadku ma to wywołać silną odpowiedź immunologiczną. Jest to szczepionka oparta na mRNA (tą działką zajmowała się Moderna).
      Naukowcy z Centrum Badań nad Szczepionkami (VRC) NIAID byli w stanie tak szybko opracować mRNA-1273, gdyż wcześniej prowadzono badania nad spokrewnionymi wirusami powodującymi SARS i MERS.
      Koronawirusy są sferyczne. Pod mikroskopem elektronowym ich osłonki wydają się ukoronowane pierścieniem małych struktur. Stąd zresztą wzięła się ich nazwa. Białko S, tzw. spike, odpowiada za interakcję z receptorem na powierzchni komórek. VRC i Modena pracowały już nad szczepionką na MERS, obierającą na cel właśnie białko S. Był to dobry start do opracowania kandydata na szczepionkę chroniącą przed COVID-19. Gdy tylko informacja genetyczna dot. SARS-CoV-2 stała się dostępna, akademicy szybko wyselekcjonowali sekwencję do ekspresji.
      Moderna już podpisała z firmą Lonza 10-letnią umowę na produkcję szczepionki w należących do Lonzy fabrykach w USA i Szwajcarii. Umowa przewiduje też rozszerzenie możliwości produkcyjnych wszystkich fabryk Lonzy. Przewiduje ona, że docelowa roczna produkcja mRNA-1273 ma wynieść do miliarda dawek o pojemności 50 µg. Pierwsze dawki mają powstać w lipcu w amerykańskiej fabryce Lonzy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Niektórzy naukowcy proponują, by w ramach prac nad szczepionką na koronawirusa SARS-CoV-2... zarazić zdrowych ochotników. Takie działanie mogłoby przyspieszyć prace nad testowaniem i dopuszczeniem szczepionki. Zwykle bowiem ostatecznym testem skuteczności szczepionki jest III faza badań klinicznych. Wówczas podaje się placebo lub nową szczepionkę tysiącom lub dziesiątkom tysięcy osób i przez długi czas sprawdza, czy osoby te zarażą się podczas codziennego życia. Jednak w czasie epidemii nie ma czasu na tak długotrwałe badania.
      Dlatego też pojawiła się propozycja, by nową szczepionkę podać około 100 osobom, a następnie wystawić je na działanie wirusa i sprawdzić, czy unikną zachorowania.
      Jeden z autorów propozycji, Nir Eyal, dyrektor Center for Population-Level Bioethics na Rutgers University, wyjaśnia, w jaki sposób można takie badania przeprowadzić bezpiecznie i w sposób etyczny.
      Zwraca on uwagę, że gdyby badania prowadzono w sposób standardowy, należałoby dużej grupie ludzi podać placebo lub szczepionkę i obserwować, czy w obu grupach wystąpiła różnica w zapadalności na COVID-19. Jednak w czasie epidemii wiele osób postępuje bardziej ostrożnie niż zwykle, ograniczają kontakty towarzyskie, więc uzyskanie miarodajnych wyników badań mogłoby potrwać bardzo długo. Jeśli zaś celowo wystawimy uczestników badania na kontakt z wirusem, to nie tylko będziemy mogli przeprowadzić badania na mniejszej grupie osób, ale i wyniki uzyskamy szybciej.
      Eyal wspomina, że badania z celowym wystawianiem ludzi na działanie patogenu przeprowadzane są dość często. Robi się tak w przypadku mniej śmiercionośnych chorób, jak grypa, tyfus, cholera czy malaria.
      Gdyby tym razem zdecydowano się na przeprowadzenie takiego eksperymentu, najpierw trzeba się upewnić – podczas wcześniejszych badań – że szczepionka jest bezpieczna. Następnie należy zebrać grupę ochotników, ludzi młodych i w dość dobrym stanie zdrowia i upewnić się, że nie są zarażeni koronawirusem. Następnie trzeba im podać albo placebo, albo szczepionkę o odczekać przez jakiś czas, by układ odpornościowy zdążył zareagować. Następnie badanych wystawia się na działanie patogenu i obserwuje różnice w obu grupach. Jako, że ludzie ci są bardzo ściśle nadzorowani, można wychwycić infekcję na bardzo wczesnym etapie.
      Oczywiście rodzi się pytanie o bezpieczeństwo badanych. Eyal mówi, że ryzyko można znacznie ograniczyć wybierając ludzi dość młodych, powiedzmy w wieku 20–45 lat, i zdrowych. Trzeba też wykluczyć ludzi, którzy już wcześniej mogli zetknąć się z wirusem. To może być trudne, ale jest wykonalne. Dodatkowo nadzór nad badanymi powinien być prowadzony co najmniej raz dziennie. To może być o tyle kłopotliwe, że dla badanej grupy trzeba by przeznaczyć nieproporcjonalnie duże środki z i tak już pracującej na krawędzi wydolności służby zdrowia. Jednak, jak zauważa naukowiec, celowe wystawienie na działanie wirusa może być dla uczestników eksperymentu bezpieczniejsze niż przypadkowe zarażenie się i oczekiwanie na standardową opiekę.

      « powrót do artykułu
×
×
  • Create New...