Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Największy atlas dystrybucji motyli w Europie

Recommended Posts

Niemieccy naukowcy opracowali największy jak dotąd atlas rozmieszczenia gatunków motyli w Europie. Pracami zespołu autorów kierował Otakar Kudrna. W środku można znaleźć kolorowe mapy dystrybucji wszystkich 441 gatunków europejskich motyli.

Zaangażowanym w projekt osobom zależało nie tylko na zaprezentowaniu danych chorologicznych (czyli w tym przypadku dotyczących struktury fauny), ale także, a może przede wszystkim na wspomożeniu wysiłków entomologów walczących o zachowanie rodzimych gatunków Starego Kontynentu. Mapy współwystępowania pozwalają wytypować obszary i gatunki, którym powinno się poświęcić szczególną uwagę.

W 2002 r. ukazała się pozycja pt. The Distribution Atlas of European Butterflies. Był to pierwszy atlas rozmieszczenia motyli na jakimkolwiek kontynencie. Ostatnio wydany atlas nie jest, jak zapewniają twórcy, zwykłym wznowieniem nakładu, ponieważ liczba danych niemal się potroiła do ok. 655 tysięcy. Same mapy wyglądają o wiele lepiej, dzięki wspomaganym komputerowo technikom kartograficznym.

Pierwszy atlas był dziełem jednego człowieka - Otakara Kudrny. Teraz dobrał on sobie współpracowników reprezentujących inne dziedziny nauki. Pieniądze na realizację projektu pochodziły m.in. od Niemieckiego Stowarzyszenia Ochrony Natury (Naturschutzbund Deutschland, NABU). Atlas nie powstałby bez pomocy 272 ochotników, którzy dostarczyli podstawowe dane.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Ponad połowa endemicznych gatunków drzew Europy jest zagrożona wyginięciem, wynika z najnowszego raportu MIędzynarodowej Unii Ochrony Przyrody (IUCN). Drzewom zagrażają inwazyjne choroby, szkodniki, zanieczyszczenie powietrza oraz rozrastające się miasta. Wśród gatunków, których liczebność spada wymieniono m.in. jesion, wiąz i jarząb. Europie grozi nie tylko utrata wielu gatunków, ale spadek bioróżnorodności oznacza, że tym trudniej będzie zapobiegać ociepleniu klimatu poprzez zalesianie.
      To poważny problem nie tylko przyrodniczy. Zagrożone są też niektóre ważne gospodarczo gatunki drzew iglastych, mówi jeden z autorów badań, David Allen. Ekspert ostrzega, że kraje, które rozważają zalesianie i sprowadzają sadzonki z zagranicy, powinny je uważnie badać, by nie zawlec na swoje terytorium chorób i szkodników, które zniszczą jeszcze istniejące lasy. Uważa się, że powinniśmy sadzić więcej drzew. I słusznie. Musimy jednak bardzo szczegółowo sprawdzać, czy nie przywieziemy wraz z nimi szkodników. Bezpieczeństwo biologiczne powinno być priorytetem, mówi.
      To inwazyjne gatunki szkodników, rozpowszechniane wskutek handlu sadzonkami i surowym drewnem, są największym zagrożeniem dla rodzimych europejskich gatunków drzew.
      Specjaliści przyjrzeli się 265 endemicznym gatunkom drzew rosnących w Europie i uznali, że 66 z nich jest krytycznie zagrożonych, 58 jest zagrożonych, 31 gatunków uznano za narażone, 7 gatunków trafiło do kategorii „bliski zagrożenia”, a 67 uznano za gatunek najmniejszej troski. Dla 36 gatunków nie było wystarczających danych, by je ocenić.
      Wiele z najbardziej narażonych gatunków należy do rodzaju Sorbus (jarząb). Znajdziemy wśród nich zarówno jarząb pospolity jak i endemiczny dla Wielkiej Brytanii Sorbus leyana, z którego w stanie dzikim pozostało zaledwie 9 drzew. Specjaliści mówią, że ten ostatni gatunek to stosunkowo nowa hybryda, która zawsze była ograniczona do niewielkiej populacji, więc jego zniknięcie nie będzie miało dużych skutków ekologicznych.
      Poważniejszym problemem jest zanikanie bardziej rozpowszechnionych gatunków. Tim Rich, jeden z autorów raportu, mówi, że dla niego szczególnie alarmujące jest niszczenie jesiona przez inwazyjne grzyby. Od pięciu lat monitoruję sytuację. W ubiegłym roku zacząłem się poważnie martwić. A w tym roku widzę wymieranie drzew na dużych obszarach i problem nie dotyczy tylko sadzonek, jak to było dotychczas. Teraz umierają wielkie drzewa. Niedawno jechałem przez Pembrokeshire i co 5–10 metrów widziałem martwe lub umierające drzewo. To poważny problem, znacznie poważniejszy niż sądziłem.
      Narażony na wyginięcie jest też kasztanowiec pospolity, atakowany przez inwazyjnego szrotówka kasztanowcowiaczka. Ten szkodnik został po raz piewrszy zaobserwowany w Macedonii w 1984 roku. Od tamtej pory rozprzestrzenił się od Pirenejów po granice Rosji, dotarł też do Wielkiej Brytanii. Jednak drzewom zagrażają nie tylko inwazyjne gatunki owadów. Kolejne problemy to wycinka lasów, rozrastanie się miast i ośrodków turystycznych, zanieczyszczenia przemysłowe i rolnicze.
      Badania nad stanem drzew to część szerzej zakrojonego przeglądu europejskich gatunków, którego celem było przyjrzenie się statusowi zwykle pomijanych gatunków po to, by określić priorytety w ochronie przyrody. Okazało się, że wyginięcie grozi od 20 do 50 procentom mięczaków, mszaków i krzewów. Większość z nich to gatunki, które zwykle nie przyciągają naszej uwagi, jednak odgrywają one kluczową rolę w produkcji żywności i podtrzymywaniu ekosystemu poprzez produkcję tlenu, recykling substancji odżywczych czy regenerację gleby. Wysoki odsetek zagrożonych gatunków Europy jest niezwykle alarmujący. Na przykład 92% mięczaków żyjących w Europie to gatunki endemiczne. To znaczy, że jeśli wyginą w Europie, w ogóle znikną z Ziemi, mówi Eike Neubert, specjalista ds. mięczaków. Przywrócenie w Europie liczby mięczaków będzie wymagało znaczących zmian w działaniach dotyczących wykorzystania ziemi, kontroli urbanizacji i odpowiedniego zarządzania półdzikimi obszarami.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      By nie stawać się kąskiem polujących nietoperzy, ćmy wyewoluowały "futerko" na tułowiu.
      Niektóre ćmy wiedzą, że zbliża się niebezpieczeństwo, dzięki narządom tympanalnym. Ponieważ jednak wiele ciem nie słyszy, musiały się u nich rozwinąć inne metody unikania drapieżników. Thomas Neil z Uniwersytetu Bristolskiego odkrył, że jedną z nich jest powłoka z włosków, która pełni funkcję kamuflażu akustycznego.
      Wykład nt. tego, jak "futro" z tułowia i stawów skrzydeł zapewnia maskowanie akustyczne, zmniejszając echo z tych części ciała, Neil miał wygłosić na 16. konferencji Amerykańskiego Towarzystwa Akustycznego.
      Włoski z tułowia pełnią funkcję [...] maski akustycznej dla wszystkich istotnych ekologicznie częstotliwości ultradźwiękowych. Taka "sierść" stanowi leciutki porowaty pochłaniacz dźwięku, który ułatwia kamuflaż akustyczny [...]. Brytyjczyk dodaje, że usunięcie włosków z tułowia podwyższało ryzyko wykrycia aż o 38%.
      Do zbadania siły echa (jego właściwości przestrzennych i częstotliwościowych) u 2 gatunków niesłyszących ciem, które padają ofiarą nietoperzy i 2 gatunków motyli, które nie są kąskami tych ssaków, Neil wykorzystał tomografię akustyczną. Porównując skutki usunięcia włosków z tułowia pierwszych i drugich, biolog stwierdził, że "futerko" determinuje kamuflaż akustyczny ciem, lecz nie motyli.
      Odkryliśmy, że "futro" na tułowiu ciem jest grubsze i gęstsze niż u motyli. Te parametry kształtują osiągi absorpcyjne [...]. Włoski ciem są w stanie pochłonąć do 85% rzutowanej energii dźwięku. U motyli maksimum absorpcji wynosiło jedynie 20%.
      Wyniki badań Neila przydadzą się do opracowania biomimetycznych materiałów do ultracienkich absorberów dźwięku. "Futerko" ćmy jest [..] leciutkie i działa jak szerokopasmowy i wielokierunkowy absorber ultradźwiękowy, którego osiągi przypominają parametry współczesnych pianek pochłaniających dźwięki.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Gdy przed 12 000 lat doszło do niemal całkowitego zatrzymania transportu ciepła w Atlantyku Europa doświadczyła ciężkich zim, po których następowały gorące lata, susze i fale upałów. Podobny scenariusz może czekać nas już wkrótce.
      W ostatnich latach w centralnej części Północnego Atlantyku rejestrowane są wyjątkowo niskie temperatury, a to silny wskaźnik poważnego osłabienia atlantyckiej południkowej cyrkulacji wymiennej (AMOC). Zdaniem naukowców zjawisko to jest najsłabsze od 1500 lat. Większość modeli klimatycznych przewiduje dalsze osłabianie AMOC w obliczu globalnego ocieplenia, chociaż całkowite zaniknięcie cyrkulacji wydaje się mało prawdopodobne. Jednak z badań klimatycznych wiemy, że do pojawienia się drastycznych zmian klimatycznych nie jest potrzebne całkowite zaniknięcie AMOC. Wystarczy jego osłabienie.
      Wspomniany na wstępie okres sprzed 12 000 lat, młodszy dryas, to ostatni i jeden z najbardziej ekstremalnych przypadków gwałtownego oziębienia, do którego doszło w okresie ocieplania się klimatu i wychodzenia z epoki lodowej.
      Wiemy, że do osłabienia AMOC może dojść w okresie szybkiego ocieplenia. Osłabienie cyrkulacji może doprowadzić do pojawienia się niezwykle zimnych zim i bardzo gorących lat z zabójczymi falami upałów i suszami włącznie.
      Symulacje komputerowe pokazują, że mechanizm związany z zimnym oceanem i gorącymi latami ma związek z tak zwanym blokowaniem atmosferycznym. Taki blok składa się z systemów wysokiego ciśnienia, które pozostają niemal nieruchome przez okres od pięciu dni do nawet wielu tygodni. Prowadzi to do ekstremalnych zjawisk pogodowych. Gdy taki blok pojawia się nad Europą, to w zimie odcina nasz kontynent od ciepłych wiatrów z zachodu, a w lecie od chłodnych wiatrów z zachodu. W efekcie mamy do czynienia z niezwykłymi falami gorąca lub chłodu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      CERN poinformował, że w bieżącym roku energia strumieni cząstek w Wielkim Zderzaczu Hadronów (LHC) zostanie zwiększona do 4 teraelektronowoltów (TeV). Będzie zatem o 0,5 TeV większa niż w latach 2010-2011. Ma to pomóc w zebraniu jak największej ilości danych przed wyłączeniem akceleratora na dłuższy czas.
      Cele, które naukowcy chcą osiągnąć w bieżącym roku to uzyskanie 15 odwrotnych femtobarnów w eksperymentach ATLAS i CMS. Odwrotny femtobarn oznacza liczbę interakcji cząsteczek na 1 femtobarn. Naukowcy mają zatem zamiar aż trzykrotnie zwiększyć ilość pozyskanych danych. Jeden odwrotny femtobarn to w praktyce około 70 bilionów zderzeń.
      Gdy rozpoczynaliśmy w 2010 roku prace z LHC zdecydowaliśmy się na pracę z wiązkami o najniższej bezpiecznej energii. Dwa lata pracy z wiązkami i wiele pomiarów wykonanych w 2011 roku upewniło nas, że możemy bezpiecznie podnieść poprzeczkę i rozpocząć bardziej ambitne eksperymenty, zanim na długi czas zamkniemy LHC - mówi Steve Myers dyrektor CERN ds. akceleratorów i technologii.
      Pod koniec bieżącego roku LHC zostanie zamknięty na około 20 miesięcy. Podczas tej przerwy Wielki Zderzacz Hadronów będzie przystosowywany do pracy z maksymalną przewidzianą mocą - 7 TeV na wiązkę. Urządzenie zostanie ponownie uruchomione pod koniec 2014 roku, a pełną moc osiągnie w roku 2015.
    • By KopalniaWiedzy.pl
      Naukowcy z University of Colorado Boulder wiedzą, jak rozpoczęła się i dlaczego trwała Mała Epoka Lodowcowa. Pod nazwą tą kryje się okres gwałtownego ochłodzenia klimatu Europy. W latach 1275-1300 średnie temperatury nagle się obniżyły i aż do XIX wieku, szczególnie w północnej Europie, panowały wyjątkowo srogie zimy. Jednym z symboli Małej Epoki Lodowcowej jest obraz przedstawiający mieszkańców Londynu jeżdżących na łyżwach po Tamizie. Zamarzły też kanały Holandii.
      Istnieją dowody, że okres ten charakteryzował się też spadkami temperatur w Chinach i Ameryce południowej, jednak najbardziej doświadczył go Stary Kontynent. W górskich dolinach szybko rozszerzające się lodowce niszczyły całe wsie i miasteczka.
      Dotychczas uważano, że Małą Epokę Lodowcową zapoczątkował wulkanizm, zmiany w aktywności słonecznej lub jedno i drugie. Naukowcy z Boulder nie tylko znaleźli przyczynę gwałtownego spadku temperatur w ciągu zaledwie 25 lat, ale wskazali również, dlaczego niższe temperatury utrzymały się przez kilkaset lat.
      Badania węglem radioaktywnym zamarzniętych roślin z Ziemi Baffina, rdzeni lodowych oraz osadów z biegunów i Islandii oraz symulacje zjawisk klimatycznych pozwoliły stwierdzić, że Mała Epoka Lodowcowa rozpoczęła się od czterech wielkich erupcji wulkanicznych, które wystąpiły w tropikach w ciągu 50 lat. Rośliny, które nagle zamarzły, a ich korzenie zostały nienaruszone wskazują, że doszło do gwałtowanego ochłodzenia w latach 1275-1300. Drugi okres nagłego spadku temperatury, wskazujący na nagłe zmiany, miał miejsce około roku 1450. Badania roślin zostały potwierdzone obserwacjami osadów z islandzkiego jeziora Langjokull. Pokazują one, że pod koniec XIII wieku warstwy wskazujące na erupcje wulkaniczne nagle stały się znacznie grubsze. Ponowne zwiększenie grubości zauważono w warstwach z XV wieku. W tych samych okresach można obserwować zwiększoną erozję powodowaną przez lodowce. To pozwoliło połączyć dane i stwierdzić, że wybuchy wulkanów ochłodziły klimat. Pozostawało jednak pytanie, dlaczego ochłodzenie trwało tak długo. Ochładzające Ziemię pyły z erupcji nie mogły przecież utrzymywać się w atmosferze przez setki lat.
      Naukowcy wykorzystali Community Climate System Model, do sprawdzenia wpływu nagłego ochłodzenia wywołanego wielkimi erupcjami, na klimat. Symulacje wykazały, że gwałtowne ochłodzenie północnych części Europy oraz Grenlandii mogło spowodować szybki rozrost grenlandzkich lodowców. W końcu te, znajdujące się na wschodnim wybrzeżu, dotarły do Północnego Atlantyku, gdzie zaczęły się topić. Woda z lodowców niemal nie zawiera soli, jest mniej gęsta od wody słonej. Z tego też powodu lodowce topiąc się w zetknięciu z cieplejszymi od nich wodami Atlantyku, uwalniały olbrzymie ilości zimnej słodkiej wody, która nie mieszała się z wodą oceanu. Tworzyła na jego powierzchni rodzaj zimnej kołdry. To spowodowało z kolei, że wody Atlantyku nie uwalniały ciepła w okolicach arktycznych, zatem nie ogrzewały Grenlandii. Tak powstał samopodtrzymujący się system chłodzący, dzięki któremu epoka lodowcowa trwała na długo po wygaśnięciu aktywności wulkanicznej.
      Nasze symulacje pokazały, że erupcje wulkaniczne mogą mieć głęboki wpływ chłodzący. Mogą rozpocząć reakcję łańcuchową tak zmieniając prądy oceaniczne i pokrywę lodową, że niższe temperatury utrzymują się przez wieki - mówi współautorka badań, Bette Otto-Bliesner.
      Profesor Gifford Miller, który kierował zespołem badawczym, powiedział, że na potrzeby symulacji komputerowych ustawiono stały poziom aktywności słonecznej. To pozwoliło stwierdzić, że do wywołania ochłodzenia wystarczyła sama aktywność wulkanów, ilość ciepła docierającego ze Słońca wcale nie musiała być mniejsza niż zwykle. Zdecydowano się nie uwzględniać wpływu naszej gwiazdy, gdyż, jak przypomina Miller szacunki dotyczące zmian aktywności pokazują, że jest ona niewielka. Obecnie uważa się, że w ciągu kilku ostatnich tysiącleci aktywność Słońca zmieniła się w mniejszym stopniu, niż zmienia się podczas jego 11-letniego cyklu.
×
×
  • Create New...