Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Największy rezerwuar wody we wszechświecie
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Czarne dziury od dziesięcioleci fascynują naukowców, pisarzy i zwykłych zjadaczy chleba. Zgodnie z ogólną teorią względności Einsteina, wszystko, co dostaje się do czarnej dziury opada do jej centrum i zostaje tam zniszczone przez gigantyczną grawitację. Centrum to, zwane osobliwością, to nieskończenie mały punkt, w którym przyspieszenie grawitacyjne jest nieskończone. Tam skupia się cała materia czarnej dziury.
Na łamach Physical Review Letters ukazał się artykuł autorstwa Steffena Gielena z University of Sheffield i Lucíi Menéndez-Pidal z Universidad Complutense de Madrid, którzy stwierdzają, że osobliwość nie oznacza końca, a raczej nowy początek. Tym nowym początkiem mają być białe dziury, w które zmieniają się czarne dziury.
Para uczonych wykorzystała mechanikę kwantową oraz uproszczony teoretyczny model płaskiej dwuwymiarowej czarnej dziury. Od dawna zastanawiano się, czy mechanika kwantowa może zmienić nasze rozumienie czarnych dziur i pozwolić nam zajrzeć w głąb ich prawdziwej natury. Z punktu widzenia mechaniki kwantowej czas nie może się skończyć, gdyż układy ciągle zmieniają się i ewoluują, stwierdza Gielen. Naukowcy pokazali jak, za pomocą praw mechaniki kwantowej, osobliwość wewnątrz czarnej dziury zostaje zastąpiona przez wielki region fluktuacji kwantowych, niewielkich zmian energii, gdzie czas i przestrzeń nie mają końca. W regionie tym czas i przestrzeń zmieniają się w nową fazę, zwaną białą dziurą. To obszar, w którym przestrzeń zaczyna funkcjonować przeciwnie do czarnej dziury. W ten sposób białe dziury mogą być miejscem, gdzie czas się rozpoczyna. O ile czarne dziury wszystko pochłaniają, białe dziury mają wyrzucać z siebie materię, a nawet czas, z powrotem do wszechświata.
O ile, zwykle, czas jest postrzegany zawsze w odniesieniu do obserwatora, w naszych badaniach czas pochodzi od tajemniczej ciemnej energii, która wypełnia wszechświat. Proponujemy, by czas był mierzony przez ciemną energię obecną wszędzie we wszechświecie i odpowiedzialną za jego aktualne rozszerzanie się, dodaje Gielen. W artykule ciemna energia została użyta niemal w roli punktu odniesienia, a czas i energia są uzupełniającymi się bytami.
To jednak dopiero początek. Hipotetycznie może istnieć obserwator – jakiś hipotetyczny byt – który wejdzie do czarnej dziury, przejdzie przez to, co opisujemy jako osobliwość i pojawi się po drugiej stronie białej dziury. To wysoce abstrakcyjne, ale w teorii może się wydarzyć, stwierdza uczony.
Jednak odkładając na bok tego hipotetycznego obserwatora, niezwykle istotnym elementem nowych rozważań jest sugestia, że istnieje głęboka łączność pomiędzy naturą czasu w jego najbardziej podstawowej formie, a ciemną energią, która wypełnia kosmos i rządzi jego rozszerzaniem się. Nowe badania sugerują też inne podejście do prób połączenia grawitacji i mechaniki kwantowej.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Supermasywna czarna dziura w centrum Drogi Mlecznej jest bardzo aktywna. Naukowcy z Northwestern University wykorzystali Teleskop Webba do uzyskania najdłuższego i najbardziej szczegółowego obrazu Sagittariusa A*. Dowiedzieli się, że w dysku akrecyjnym wokół dziury bez przerwy mają miejsce rozbłyski. Niektóre z nich to bardzo słabe migotania, trwające sekundy. Inne, potężne i oślepiające, można obserwować codziennie. Są jeszcze inne, niezwykle słabe, które trwają miesiącami.
Nowe odkrycia pozwolą lepiej zrozumieć naturę czarnych dziur i ich interakcje z otoczeniem, a także dynamikę i ewolucję naszej galaktyki. Spodziewamy się, że do rozbłysków dochodzi w pobliżu wszystkich supermasywnych czarnych dziur. Jednak nasza czarna dziura jest unikatowa. Tam się zawsze coś gotuje, zawsze widać jakąś aktywność, wydaje się, że ona nigdy nie jest spokojna. Obserwowaliśmy ją wielokrotnie w 2023 i 2024 roku i przy każdej obserwacji odnotowywaliśmy zmiany. Za każdym razem widzieliśmy coś innego, to naprawdę imponujące. Nic nigdy nie było takie samo, mówi profesor fizyki i astronomii Farhad Yusef-Zadeh, który specjalizuje się w badaniu centrum Drogi Mlecznej.
Uczony wraz z zespołem wykorzystali urządzeni NIRCam na JWST, które może jednocześnie prowadzić obserwacje w dwóch zakresach podczerwieni. W sumie zebrali 48 godzin obserwacji, które prowadzili co 8–10 godzin w ciągu roku. To pozwoliło im na odnotowywanie zmian w czasie. Sgr A* okazała się bardziej aktywna, niż naukowcy się spodziewali. W dysku akrecyjnym ciągle dochodziło do rozbłysków o różnej jasności i czasie trwania. W ciągu doby miało miejsce 5–6 dużych rozbłysków, pomiędzy którymi naukowcy obserwowali rozbłyski mniejsze. W danych widzimy wciąż zmieniającą się, gotującą jasność. I nagle, bum! Wielki rozbłysk. A później się uspokaja. Nie zauważyliśmy żadnego wzorca. Wydaje się, że to proces przypadkowy. Profil aktywności czarnej dziury był za każdym razem inny i niezwykle ekscytujący, dodaje uczony.
Naukowcy nie rozumieją procesów zachodzących w dyskach akrecyjnych czarnych dziur. Profesor Yusef-Zadeh podejrzewa dwa różne mechanizmy. Jeśli dysk przypomina rzekę, to krótkotrwałe słabe rozbłyski są jak niewielki przypadkowe fale, a większe długotrwałe rozbłyski jak fale pływowe powodowane przez bardziej znaczące wydarzenia.
NIRCam pracuje w zakresach 2,1 i 4,8 mikrometrów. Jednym z najbardziej niespodziewanych odkryć było spostrzeżenie, że zjawiska widoczne w krótszym zakresie fal zmieniały jasność na krótko przed wydarzeniami z dłuższego zakresu fal. Po raz pierwszy obserwujemy taką różnicę w czasie podczas obserwacji w tych długościach fali. Obserwowaliśmy je jednocześnie w NIRCam i zauważyliśmy, że dłuższe fale spóźniały się w stosunku do krótszych od niewielką ilość czasu, od kilku sekund do około 40 sekund, dziwi się Yusef-Zadeh.
To opóźnienie dostarcza dodatkowych informacji. Może ono wskazywać, że cząstki w miarę trwania rozbłysku tracą energię, a utrata ta ma miejsce szybciej w krótszych zakresach fali. Takie zmiany mogą zachodzić, gdy cząstki poruszają się po spirali wokół linii pola magnetycznego.
Badacze, chcąc to wyjaśnić, mają nadzieję na przeprowadzenie dłuższych obserwacji. Profesor Yusef-Zadeh już złożył prośbę o zgodę na nieprzerwane wykorzystanie NIRCam przez 24 godziny. Dłuższy czas obserwacji pozwoli na usunięcie z nich zakłóceń i poprawienie rozdzielczości. Gdy obserwuje się tak słabe rozbłyski, trzeba zmagać się z zakłóceniami. Jeśli moglibyśmy prowadzić obserwacje nieprzerwanie przez 24 godziny, moglibyśmy zredukować poziom szumu i zobaczyć szczegóły, których obecnie nie widzimy, wyjaśnia uczony.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Po raz pierwszy zaobserwowano, w czasie rzeczywistym i skali molekularnej, jak powstaje woda. Naukowcy z Northwestern University zarejestrowali łączenie się atomów wodoru i tlenu. Obserwacji dokonano w ramach badań, w czasie których uczeni chcieli zrozumieć działanie palladu jako katalizatora reakcji prowadzącej do powstawania wody.
Uzyskanie wody za mocą palladu nie wymaga ekstremalnych warunków, zatem może być wykorzystane w praktyce do pozyskania wody tam, gdzie jest trudno dostępna. Na przykład na innych planetach. Przypomnijmy sobie Marka Watneya, granego przez Matta Damona w „Marsjaninie”. Spalał paliwo rakietowe, by uzyskać wodór, a następnie dodawał do niego tlen. Nasz proces jest bardzo podobny, ale nie potrzebujemy ognia i innych ekstremalnych warunków. Po prostu zmieszaliśmy pallad i gazy, mówi jeden z autorów badań, profesor Vinayak Dravid.
O tym, że pallad może być katalizatorem do generowania wody, wiadomo od ponad 100 lat. To znane zjawisko, ale nigdy go w pełni nie rozumieliśmy, wyjaśnia doktorant Yukun Liu, główny autor badań. Młody uczony dodaje, że do zrozumienia tego procesu konieczne było połączenie analizy struktury w skali atomowej oraz bezpośredniej wizualizacji. Wizualizowanie całego procesu było zaś niemożliwe.
Jednak w styczniu 2024 roku na łamach Science Advances profesor Dravid opisał nowatorką metodę analizowania molekuł gazu w czasie rzeczywistym. Uczony wraz z zespołem stworzyli ultracienką membranę ze szkła, która więzi molekuły gazu w reaktorach o strukturze plastra miodu. Uwięzione atomy można obserwować za pomocą transmisyjnego mikroskopu elektronowego w próżni wysokiej.
Za pomocą nowej metody uczeni zaobserwowali, jak atomy wodoru wnikają do próbki palladu, rozszerzając jej sieć atomową. Po chwili – ku zaskoczeniu uczonych – na powierzchni palladu pojawiły się krople wody. Myślę, że to najmniejsze kiedykolwiek zaobserwowane krople. Tego się nie spodziewaliśmy. Na szczęście nagraliśmy to i możemy udowodnić, że nie oszaleliśmy, cieszy się Liu.
Po potwierdzeniu, że pojawiła się woda, naukowcy zaczęli szukać sposobu na przyspieszenie reakcji. Zauważyli, że najszybciej zachodzi ona, gdy najpierw doda się wodór, później tlen. Atomy wodoru wciskają się między atomy palladu, rozszerzając próbkę. Gdy do całości zostaje dodany tlen, wodór opuszcza pallad, by połączyć się z tlenem, a próbka kurczy się do wcześniejszych rozmiarów.
Badania prowadzone były w nanoskali, ale wykorzystanie większych kawałków palladu pozwoliłoby na uzyskanie większej ilości wody. Autorzy badań wyobrażają sobie, że w przyszłości astronauci mogliby zabierać ze sobą pallad wypełniony wodorem. Gdy będą potrzebowali wody, dodadzą tlen. Pallad jest drogi, ale nasza metoda go nie zużywa. Jedyne, co jest tutaj zużywane, to gaz. A wodór to najpowszechniej występujący gaz we wszechświecie. Po reakcji pallad można wykorzystywać ponownie, mówi Liu.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Europejski radioteleskop LOFAR (LOw Frequency ARray) – którego stacje znajdują się również w Polsce – zanotował najdłuższą parę dżetów wydobywających się z czarnej dziury. Struktura nazwana Porfyrion – od imienia jednego z gigantów z mitologii greckiej – ma długość 23 milionów lat świetlnych. Dotychczas, na podstawie obserwacji i obliczeń sądzono, że maksymalna długość takich dżetów jest znacznie mniejsza.
Dotychczas sądzono, że limit długości pary dżetów wynosi 4,6–5,0 Mpc (megaparseków). Parsek to 3,26 roku świetlnego, zatem mówimy tutaj o około 16 milionach lat świetlnych. W 2022 roku ten sam zespół naukowy poinformował o istnieniu dżetu wydobywającego się z galaktyki radiowej Alkynoeus. Ma on długość 5 Mpc i był opisywany jako największa struktura pochodzenia galaktycznego. Brak dłuższych par dżetów oraz wyliczenia teoretyczne skłoniły naukowców do wysunięcia hipotezy, że 5 Mpc jest limitem długości.
Informujemy o zaobserwowaniu struktury radiowej rozciągającej się na około 7 Mpc, czytamy na łamach Nature. Istnienie dżetu dowodzi, że tego typu struktury mogą uniknąć zniszczenia przez niestabilności magnetohydrodynamiczne na przestrzeniach kosmologicznych, nawet jeśli powstały w czasie, gdy wszechświat był znacznie bardziej gęsty, niż obecnie. Nie wiadomo, w jaki sposób tak długotrwała stabilność mogła zostać zachowana.
Odkrycie sugeruje też, że gigantyczne dżety mogły odgrywać większą niż sądzono rolę w formowaniu się galaktyk we wczesnym wszechświecie. Astronomowie uważają, że galaktyki i ich czarne dziury wspólnie przechodzą ewolucję, a jednym z kluczowych elementów dżetów jest emitowanie olbrzymich ilości energii, które wpływają na ich galaktyki macierzyste i galaktyki z nimi sąsiadujące. Nasze odkrycie pokazuje, że oddziaływanie takich dżetów rozciąga się na większe odległości, niż sądziliśmy, mówi współautor badań, profesor George Djorgovski z Kalifornijskiego Uniwersytetu Technologicznego.
Autorzy nowych badań wykorzystali LOFAR do poszukiwania olbrzymich dżetów. Dżety to powszechne zjawisko, jednak zwykle są stosunkowo niewielkie. Wcześniej znano setki naprawdę dużych struktur tego typu i uważano, że rzadko one występują. Teraz badacze zarejestrowali ich ponad 10 000. Wielkie dżety były znane wcześniej, ale nie wiedzieliśmy, że jest ich tak dużo, dodaje profesor Martin Hardcastle z University of Hertfordshire.
Poszukiwania olbrzymich dżetów rozpoczęły się od dość przypadkowego spostrzeżenia. W 2018 roku główny autor obecnych badań, Martijn S. S. L. Oei, wraz z zespołem wykorzystał LOFAR do obserwowania włókien rozciągających się pomiędzy galaktykami. Na obrazach naukowcy dostrzegli zaskakująco dużo wielkich dżetów. Nie mieliśmy pojęcia, że jest ich aż tyle, mówi Oei.
Naukowcy zaczęli więc szukać kolejnych wielkich dżetów i trafili na Porfyriona. Poza LOFAR-em wykorzystali kilka innych teleskopów, dzięki którym określili, skąd pochodzi i jak daleko od nas się znajduje. Zauważyli nie tylko, że struktura ta pochodzi ze znacznie wcześniejszych okresów istnienia wszechświata, niż inne. Stwierdzili, że gigant znajduje się w regionie wszechświata, w którym istnieje wiele czarnych dziur tego samego typu, z którego on pochodzi. To aż może wskazywać, że przez astronomami jeszcze wiele podobnych odkryć. Możemy obserwować wierzchołek góry lodowej, mówi Oei.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Ponad połowa największych jezior na świecie traci wodę, wynika z badań przeprowadzonych przez międzynarodowy zespół naukowy z USA, Francji i Arabii Saudyjskiej. Przyczynami tego stanu rzeczy są głównie globalne ocieplenie oraz niezrównoważona konsumpcja przez człowieka. Jednak, jak zauważają autorzy badań, dzięki opracowanej przez nich nowej metodzie szacunku zasobów wody, trendów oraz przyczyn jej ubywania, można dostarczyć osobom odpowiedzialnym za zarządzanie informacji, pozwalającymi na lepszą ochronę krytycznych źródeł wody.
Przeprowadziliśmy pierwsze wszechstronne badania trendów oraz przyczyn zmian ilości wody w światowych jeziorach, wykorzystując w tym celu satelity oraz modele obliczeniowe, mówi główny autor badań, Fangfang Yao z Uniwersytetu Kalifornijskiego w Boulder (CU Boulder). Mamy dość dobre informacje o słynnych jeziorach, jak Morze Kaspijskie, Jezioro Aralskie czy Salton Sea, jeśli jednak chcemy dokonać szacunków w skali globalnej, potrzebujemy wiarygodnych informacji o poziomie wód i objętości jeziora. Dzięki tej nowej metodzie możemy szerzej spojrzeć na zmiany poziomu wód jezior w skali całej planety, dodaje profesor Balaji Rajagopalan z CU Boulder.
Naukowcy wykorzystali 250 000 fotografii jezior wykonanych przez satelity w latach 1992–2020. Na ich podstawie obliczyli powierzchnię 1972 największych jezior na Ziemi. Użyli też długoterminowych danych z pomiarów poziomu wód z dziewięciu satelitów. W przypadku tych jezior, co do których brak było danych długoterminowych, wykorzystano pomiary wykorzystane za pomocą bardziej nowoczesnego sprzętu umieszczonego na satelitach. Dzięki połączeniu nowych danych z długoterminowymi trendami byli w stanie ocenić zmiany ilości wody w jeziorach na przestrzeni kilku dziesięcioleci.
Badania pokazały, że 53% największych jezior na świecie traci wodę, a jej łączny ubytek jest 17-krotnie większy niż pojemność największego zbiornika na terenie USA, Lake Meads. Wynosi zatem około 560 km3 wody.
Uczeni przyjrzeli się też przyczynom utraty tej wody. W przypadku około 100 wielkich jezior przyczynami były zmiany klimatu oraz konsumpcja przez człowieka. Dzięki tym badaniom naukowcy dopiero teraz dowiedzieli się, że za utratą wody w jeziorze Good-e-Zareh w Afganistanie czy Mar Chiquita w Argentynie stoją właśnie takie przyczyny. Wśród innych ważnych przyczyn naukowcy wymieniają też odkładanie się osadów. Odgrywa ono szczególnie ważną rolę w zbiornikach, które zostały napełnione przed 1992 rokiem. Tam zmniejszanie się poziomu wody jest spowodowane głównie zamuleniem.
Podczas gdy w większości jezior i zbiorników wody jest coraz mniej, aż 24% z nich doświadczyło znacznych wzrostów ilości wody. Są to głównie zbiorniki znajdujące się na słabo zaludnionych terenach Tybetu i północnych części Wielkich Równin oraz nowe zbiorniki wybudowane w basenach Mekongu czy Nilu.
Autorzy badań szacują, że około 2 miliardów ludzi mieszka na obszarach, gdzie w zbiornikach i jeziorach ubywa wody, co wskazuje na pilną potrzebę uwzględnienia takich elementów jak zmiany klimatu, konsumpcja przez człowieka czy zamulanie w prowadzonej polityce. Jeśli na przykład konsumpcja przez człowieka jest ważnym czynnikiem prowadzącym do utraty wody, trzeba wprowadzić mechanizmy, które ją ograniczą, mówi profesor Ben Livneh. Uczony przypomina jezioro Sevan w Armenii, w którym od 20 lat poziom wody rośnie. Autorzy badań łączą ten wzrost z wprowadzonymi i egzekwowanymi od początku wieku przepisami dotyczącymi sposobu korzystania z wód jeziora.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.