Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Naruszyli prawo Wiedemanna-Franza

Recommended Posts

Naukowcy z University of Bristol empirycznie dowiedli, że liczące sobie ponad 150 lat prawo Wiedmanna-Franza nie zawsze jest zachowane. Prawo to mówi, że w stosunek przewodnictwa cieplnego i elektrycznego w każdym metalu jest stały przy stałej temperaturze.

Przed piętnastu laty dwójka amerykańskich fizyków wysunęła teorię, że prawo Wiedmanna-Franza nie ma zastosowania w metalu tworzącym strukturę dwuwymiarową. Wówczas bowiem elektron rozpadnie się na dwa stany kwazicząsteczkowe - spinon (posiadający spin, ale nie posiadający ładunku) oraz holon (niosący ładunek, ale nie spin). Amerykanie twierdzili, że gdy holon napotka zanieczyszczenie w metalu, odbije się, a spinon będzie w stanie wędrować dalej. W takim przypadku zatem ciepło będzie się dalej rozprzestrzeniało, a ładunek już nie. Różnica w przewodnictwie cieplnym i elektrycznym będzie rosła wraz ze spadkiem temperatury.

Teraz obliczenia Amerykanów potwierdziła grupa pracująca pod kierunkiem profesora Nigela Husseya. Uczeni dowiedli, że dwuwymiarowy materiał może przewodzić ciepło 100 000 razy lepiej, niż inne metale, w których prawo Wiedemanna-Franza zachowuje ważność. To nie tylko szansa na wykorzystanie tego zjawiska w nowoczesnych technologiach, ale również dowód na bardzo silną separacje spinu i ładunku w dwuwymiarowym świecie.

Share this post


Link to post
Share on other sites
Guest simian raticus

Skoro coś jest oczywiste to po co to udowadniać albo odkrywać? Tak było od dawien dawna i jest oraz będzie!

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      O grafenie piszemy od lat, a przed kilkunastoma miesiącami informowaliśmy o powstaniu grafanu. Teraz do rodziny dołączył trzeci jej członek - grafyn.
      Symulacje komputerowe przeprowadzone przez niemieckich uczonych wskazują na możliwość istnienia pojedynczej warstwy atomów węgla, które jednak nie muszą być ułożone w kształcie sześciokąta, a mogą przyjmować bardzo różne formy. Nowy materiał może być zatem znacznie bardziej elastyczny niż grafen.
      Jak pamiętamy, energia elektronów poruszających się w grafenie jest wprost proporcjonalna do momentu pędu. Gdy energie takich elektronów przedstawimy na trójwymiarowym wykresie otrzymamy stożek Diraca. Te unikatowe właściwości grafenu powodują, że elektrony zachowują się w nim tak, jakby nie miały masy, co pozwala im na poruszanie się z niezwykle dużą prędkością, a to może być bardzo pożądaną cechą np. w elektronice.
      Grafyn tym różni się od grafenu, który ma pojedyncze lub podwójne wiązania, iż tworzy podwójne i potrójne wiązania, a atomy węgla nie układają się heksagonalnie.
      Niemieccy uczeni, wśród nich chemik Andreas Görling z Uniwersytetu Erlangen-Nuremberg, prowadzili komputerowe symulacje trzech różnych wzorców, w jakie mogą układać się atomy węgla w grafynie i odkryli, że we wszystkich mamy do czynienia ze stożkiem Diraca. Jednak, co ważniejsze, okazało się, że jeden z badanych wzorów 6,6,12 grafyn, w którym atomy węgla charakteryzuje prostokątna symetria, przewodzi elektrony tylko w jednym kierunku. Taki materiał nie potrzebowałby domieszkowania innymi pierwiastkami, by wykazywać właściwości pożądane w elektronice.
      W przeszłości uzyskiwano już niewielkie skrawki grafynu. Teraz niemieckie badania dowiodły, że warto pracować nad tym materiałem i różnymi jego odmianami.
    • By KopalniaWiedzy.pl
      Po dziesięciu latach pracy naukowcom z Princeton University udało się skonstruować system, który pozwala na kontrolowanie spinu elektronów w krzemie nawet przez 10 sekund. Wydłużenie czasu, w którym można kontrolować spin elektronów jest niezbędne do skonstruowania praktycznego komputera kwantowego. Dotychczas udawało się utrzymać spin elektronów przez ułamki sekund. Stany kwantowe są bardzo nietrwałe i pod wpływem czynników zewnętrznych dochodzi do ich utraty, czyli dekoherencji. Kwantowy bit, na którym mają pracować kwantowe komputery, traci swoje właściwości i staje się „zwykłym“ bitem, przyjmującym w danym momencie tylko jedną wartość, zamiast wcześniejszych wszystkich możliwych wartości.
      Profesor Stephen Lyon i Alexei Tyryshkin, który są autorami najnowszego osiągnięcia, mówią, że kluczem do sukcesu było użycie niezwykle czystej próbki krzemu-28. Częściowo zawdzięczamy to udoskonaleniu metody pomiaru, ale większość zależy od materiału. To najczystsza próbka, jakiej dotychczas używaliśmy - mówi Lyon.
      Naukowcy zamknęli kawałek krzemu-28 w stalowym cylindrze wypełnionym helem. Wewnątrz panowała temperatura 2 kelwinów. Cylinder znajdował się pomiędzy dwoma pierścieniami, które miały za zadanie kontrolować pole magnetyczne wokół próbki. Po potraktowaniu krzemu mikrofalami doszło do skoordynowania spinów około 100 miliardów elektronów. Zaszła zatem koherencja i została ona utrzymana przez niewiarygodnie długie 10 sekund. Jej utrzymanie jest niezwykle ważne dla komputerów kwantowych, gdyż działające na nich oprogramowanie będzie potrzebowało czasu np. na korekcję błędów czy i operacje na danych. Muszą być one zatem dostępne na tyle długo, by program zakończył pracę z nimi.
      Stan kwantowy może zostać zniszczony przez naturalne pole magnetyczne materiałów. Dlatego też zdecydowano się na wykorzystanie krzemu-28, który, w przeciwieństwie do tradycyjnie używanego krzemu-25 ma niezwykle słabe pole magnetyczne.
      Projekt rozpoczął się 10 lat temu. Steve przyszedł do mnie i powiedział, żebyśmy wykorzystali próbkę wolną od innych izotopów - wspomina Tyryshkin. Po trzech latach badań uczeni byli wstanie utrzymać koherencję przez 600 mikrosekund. Przez kolejne lata wypróbowywali różne materiały.
      W końcu dzięki Avogadro Project, którego celem jest opracowanie nowej definicji kilograma, udało się uzyskać próbkę niezwykle czystego krzemu-28. Międzynarodowa współpraca dała niezwykłe wyniki. Zwykle w krzemie-28 znajduje się nawet 50000 części na milion krzemu-29, do tego dochodzą inne zanieczyszczenia, które mają silne pole magnetyczne. W oczyszczonym krzemie-28 liczba atomów krzemu-29 nie przekracza 50 na milion. Taka próbka była... zbyt czysta. Dodano do niej nieco fosforu, by była ona na tyle aktywna elektrycznie, żeby reagować na mikrofale. To właśnie ta reakcja, którą Lyon i Tyryshkin nazywają „echem“, gdyż są to mikrofale emitowane przez próbkę, pozwala na odczytanie spinu elektronów.
      Bardzo trudne było znalezienie odpowiedniej liczby atomów fosforu. Ich zbyt duża liczba oznaczałaby powstanie w próbce zbyt silnego pola magnetycznnego. Z kolei za mało fosforu dałoby zbyt słabe „echo“, którego nie można by odczytać. Istotne było też znaczne obniżenie temperatury próbki, gdyż w temperaturze pokojowej elektrony fosforu są zbyt aktywne. „Uspokajają się“ dopiero w temperaturze bliskiej zeru absolutnemu.
      Warto w tym miejscu przypomnieć, że już wcześniej innym zespołom naukowym udało się kontrolować spin elektronów przez równie długi czas. Wykonano nawet pewne operacje matematyczne. Jednak do eksperymentów używano jonów zamkniętych w komorach próżniowych. Lyon i Tyryshkin skupili się na krzemie, gdyż uważają, że jest on znacznie bardziej praktyczny. Współczesna elektronika już wiele dekad temu zrezygnowała przecież z lamp elektronowych na rzecz krzemu.
    • By KopalniaWiedzy.pl
      Zespół profesora Xaioyanga Zhu z University of Texas odkrył, iż dzięki zastosowaniu w ogniwach słonecznych plastikowego półprzewodnika można dwukrotnie zwiększyć liczbę elektronów uzyskiwanych z pojedynczego fotonu. Tym półprzewodnikiem jest policykliczny węglowodór aromatyczny, pentacen.
      Przed rokiem pisaliśmy, że profesor Zhu przeprowadził badania, z których wynikało, że wydajność ogniw słonecznym można będzie zwiększyć do 66%. Obecnie najbardziej wydajne urządzenia tego typu są w stanie przekształcić w prąd elektryczny około 31% energii słonecznej. Dzieje się tak, gdyż zdecydowaną większość energii stanowią tzw. gorące elektrony, których nie potrafiliśmy przechwytywać. Zhu pokazał, w jaki sposób można to zrobić. Profesor zaznaczył wówczas, że stworzenie szeroko dostępnej technologii będzie trudne, gdyż wymaga mocnego skoncentrowania promieni słonecznych na panelach, do czego z kolei konieczne jest opracowanie sposobów produkcji ogniw z nowych materiałów.
      Teraz zespół pod kierunkiem uczonego znalazł alternatywę. Uczeni odkryli, że możliwe jest uzyskanie dwóch elektronów z pojedynczego fotonu i ich przechwycenie. Co więcej, ich rozwiązanie nie wymagałoby koncentrowania promieni. Okazało się bowiem, że po zaabsorbowaniu fotonu przez pentacen zachodzi zjawisko MEG, o którym informowaliśmy przed kilkoma dniami, przy okazji stworzenia ogniwa słonecznego o zewnętrznej wydajności kwantowej przekraczającej 100%.
      Zdaniem Zhu zastosowanie pentacenu pozwoli na zwiększenie wydajności ogniw do 44%.
    • By KopalniaWiedzy.pl
      Badacze z amerykańskiego Narodowego Laboratorium Energii Odnawialnej (NREL) poinformowali o stworzeniu pierwszego ogniwa słonecznego, którego zewnętrzna wydajność kwantowa wynosi ponad 100%. Dla fotoprądu wartość zewnętrznej wydajności kwantowej - podawaną w procentach - wylicza się na podstawie liczby elektronów przepływających przez obwód w ciągu sekundy podzielonej przez liczbę fotonów z określonej długości fali, wpadających w ciągu sekundy do ogniwa słonecznego. Dotychczas nie istniały ogniwa, których wydajność w jakimkolwiek zakresie fali przekraczałaby 100%. Uczonym z NREL udało się osiągnąć szczytową wydajność kwantową rzędu 114%. W przyszłości może to pozwolić na zbudowanie ogniw słonecznych, z których energia będzie równie tania, lub tańsza, od energii uzyskiwanej z paliw kopalnych czy energii jądrowej.
      Mechanizm uzyskania wydajności większej niż 100% bazuje na procesie zwanym Multiple Exciton Generation (MEG), podczas którego pojedynczy foton o odpowiednio wysokiej energii tworzy więcej niż jedną parę elektron-dziura.
      W roku 2001 pracujący w NREL Arthur J. Nozik przewidział, że MEG będzie lepiej działało w półprzewodnikowych kropkach kwantowych niż w zwykłych półprzewodnikach. Pięć lat później w pracy opublikowanej wraz z Markiem Hanną Nozik stwierdził, że kropki kwantowe użyte w ogniwach słonecznych mogą zwiększyć ich wydajność o około 35% w porównaniu z innymi nowoczesnymi rozwiązaniami. Ogniwa bazujące na kropkach kwantowych nazywane się ogniwami trzeciej (lub kolejnej) generacji. Obecnie buduje się ogniwa pierwszej i drugiej generacji.
      Zjawisko MEG, zwane też Carrier Multiplication (CM), zostało po raz pierwszy zaprezentowane w Los Alamos National Laboratory w 2004 roku. Od tamtej chwili wiele innych ośrodków badawczych potwierdziło jego występowanie w różnych półprzewodnikach. Teraz NREL zaprezentował MEG o wartości większej niż 100%. Badań dokonano przy niskiej intensywności symulowanego światła słonecznego, a mimo to eksperymentalne ogniwo słoneczne osiągnęło wydajność konwersji energii rzędu 4,5%. To bardzo dobry wynik, biorąc pod uwagę fakt, że ogniowo nie było optymalizowane pod kątem wydajności.
    • By KopalniaWiedzy.pl
      Specjaliści z niemieckiej firmy Namlab GmbH stworzyli podstawy tranzystora polowego, który za pomocą sygnału elektrycznego można rekonfigurować tak, by działał jak tranzystor typu p lub typu n.
      Koncepcyjny uniwersalny tranzystor został opisany w artykule w Nano Letters. Niemcy zaprezentowali teoretyczne założenia tranzystora, jednak twierdzą, że bez najmniejszych problemów można zbudować takie urządzenie za pomocą technologii CMOS.
      Nowy tranzystor składa się z pojedynczego nanokabla o strukturze metal-półprzewodnik-metal, otoczonego dwutlenkiem krzemu. Elektrony i dziury przepływają ze źródła na jednym końcu nanokabla przez dwie bramki do drenu. Bramki w różny sposób kontrolują ruch elektronów i dziur. Jedna z nich decyduje o trybie pracy tranzystora wybierając, czy wykorzystuje elektrony czy dziury. Druga z nich kontroluje ich przepływ dobierając odpowiednio rezystancję.
      Niemcy zaprezentowali zatem całkowicie inne podejście niż spotykamy we współczesnych tranzystorach. Obecnie o tym, czy tranzystor będzie typu p czy n decyduje się na etapie produkcji za pomocą odpowiednich domieszek. Raz wybrany typ nie może już być zmieniony.
      W rekonfigurowalnym tranzystorze napięcie przyłożone do jednej z bramek decyduje o jego typie. Bariera Schottky’ego, która powstaje na styku metalu i półprzewodnika blokuje albo dziury, albo elektrony. Gdy zablokowane są elektrony, dziury przepływają i mamy do czynienia z tranzystorem typu p. Nieco inne napięcie spowoduje, że zablokowane zostaną dziury, a możliwy będzie ruch elektronów.
      Taki tranzystor może przeprowadzać operacje logiczne właściwe dla tranzystorów p i n. To z kolei oznacza, że może je zastąpić, co pozwoli na zmniejszenie liczby tranzystorów w układzie bez ograniczania jego funkcjonalności. Za tym idzie możliwość produkcji mniejszych układów scalonych, zużywających mniej energii i łatwiejszych oraz tańszych w chłodzeniu.
×
×
  • Create New...