Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Przełączanie gorącego nadprzewodnika

Recommended Posts

Gorące nadprzewodniki można włączać i wyłączać w ciągu biliardowych części sekundy. Naukowcy z University of Oxford i Instytutu Maksa Plancka z Uniwersytetu w Hamburgu stworzyli ultraszybki przełącznik nadprzewodnikowy.

Gorący nadprzewodnik, który został wykorzystany podczas eksperymentów to znany od dawna kryształ, którego głównym składnikiem jest miedzian lantanu (La2CuO4) domieszkowany strontem (La1,84Sr0,16CuO4). W temperaturze -233 stopni Celsjusza staje się on nadprzewodnikiem. Sposób działania materiału nie jest dokładnie znany,  jednak uczeni wiedzą, że składa się on z ułożonych jedna na drugiej warstw zbudowanych z tlenu i miedzi. Normalnie elektrony poruszają się tylko wzdłuż warstw. Jednak gdy schłodzimy kryształ do -233 stopni Celsjusza, elektrony mogą przemieszczać się pomiędzy warstwami. Zdaniem fizyków, poniżej tej temperatury elektrony bardziej przypominają falę niż cząstkę, zachodzą na siebie, co umożliwia przemieszczanie się ładunku w trzech wymiarach.

Andrea Cavalleri z Uniwersytetu w Hamburgu postanowił sprawdzić, czy stan nadprzewodzący wspomnianego materiału można włączać i wyłączać, manipulując w ten sposób możliwościami poruszania się elektronów.

Teoretycznie takie włączanie i wyłączanie jest możliwe za pomocą silnego pola elektrycznego ustawionego pod odpowiednim kątem do warstw kryształu. Jednak zastosowanie tej teorii w praktyce nie miałoby sensu, gdyż pole elektryczne podgrzałoby kryształ i straciłby on właściwości nadprzewodzące.

Uczeni postanowili wykorzystać ultrakrótkie impulsy elektromagnetyczne o częstotliwości liczonej w terahercach. Impulsy takie posiadają pole elektryczne, które powinno zakłócać nakładanie się fal pomiędzy warstwami, jednak warunkiem udanego eksperymentu było stworzenie impulsów na tyle silnych, by rzeczywiście doszło do zakłócenia i na tyle krótkotrwałych, by nie podgrzały kryształu.

Dopiero od niedawna dysponujemy techniką umożliwiającą generowanie takich impulsów. Eksperymenty wykazały, że terahercowe impulsy umożliwiają wielokrotne przełączanie nadprzewodzącego kryształu. To pozwoli nie tylko badać właściwości gorących nadprzewodników. Przełączane nadprzewodniki pracują bowiem podobnie jak tranzystory polowe, niewykluczone zatem, że w przyszłości będą wykorzystywane jako bardzo szybkie nanotranzystory kontrolowane za pomocą mikrofal.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Wynikiem współpracy uczonych z Purdue University, University of New South Wales i University of Melbourne jest najmniejszy tranzystor na świecie. Urządzenie zbudowane jest z pojedynczego atomu fosforu. Tranzystor nie tyle udoskonali współczesną technologię, co pozwoli na zbudowanie zupełnie nowych urządzeń.
      To piękny przykład kontrolowania materii w skali atomowej i zbudowania dzięki temu urządzenia. Pięćdziesiąt lat temu gdy powstał pierwszy tranzystor nikt nie mógł przewidzieć, jaką rolę odegrają komputery. Teraz przeszliśmy do skali atomowej i rozwijamy nowy paradygmat, który pozwoli na zaprzęgnięcie praw mechaniki kwantowej do dokonania podobnego jak wówczas technologicznego przełomu - mówi Michelle Simmons z University of New South Wales, która kierowała pracami zespołu badawczego.
      Niedawno ta sama grupa uczonych połączyła atomy fosforu i krzem w taki sposób, że powstał nanokabel o szerokości zaledwie czterech atomów, który przewodził prąd równie dobrze, jak miedź.
      Gerhard Klimeck, który stał na czele grupy uczonych z Purdue prowadzących symulacje działania nowego tranzystora stwierdził, że jest to najmniejszy podzespół elektroniczny. Według mnie osiągnęliśmy granice działania Prawa Moore’a. Podzespołu nie można już zmniejszyć - powiedział.
      Prawo Moore’a stwierdza, że liczba tranzystorów w procesorze zwiększa się dwukrotnie w ciągu 18 miesięcy. Najnowsze układy Intela wykorzystują 2,3 miliarda tranzystorów, które znajdują się w odległości 32 nanometrów od siebie. Atom fosforu ma średnicę 0,1 nanometra. Minie jeszcze wiele lat zanim powstaną procesory budowane w takiej skali. Tym bardziej, że tranzystor zbudowany z pojedynczego atomu ma bardzo poważną wadę - działa tylko w temperaturze -196 stopni Celsjusza. Atom znajduje się w studni czy też kanale. Żeby działał jak tranzystor konieczne jest, by elektrony pozostały w tym kanale. Wraz ze wzrostem temperatury elektrony stają się bardziej ruchliwe i wychodzą poza kanał - wyjaśnia Klimeck. Jeśli ktoś opracuje technikę pozwalającą na utrzymanie elektronów w wyznaczonym obszarze, będzie można zbudować komputer działający w temperaturze pokojowej. To podstawowy warunek praktycznego wykorzystania tej technologii - dodaje.
      Pojedyncze atomy działające jak tranzystory uzyskiwano już wcześniej, jednak teraz po raz pierwszy udało się ściśle kontrolować ich budowę w skali atomowej. Unikatową rzeczą, jaką osiągnęliśmy, jest precyzyjne umieszczenie pojedynczego atomu tam, gdzie chcieliśmy - powiedział Martin Fuechsle z University of New South Wales.
      Niektórzy naukowcy przypuszczają, że jeśli uda się kontrolować elektrony w kanale, to będzie można w ten sposób kontrolować kubity, zatem powstanie komputer kwantowy.
    • By KopalniaWiedzy.pl
      Uczeni z University of Manchester wpadli na pomysł, który przybliża moment praktycznego wykorzystania grafenu do budowy komputerów. Grafen jest bardzo obiecującym materiałem, ale sprawia on spory kłopot, gdy... przewodzi elektrony zbyt dobrze. To powoduje, że dochodzi do olbrzymich wycieków prądu z grafenowych urządzeń.
      Co prawda specjaliści zaprezentowali już pojedyncze grafenowe tranzystory, które pracują z częstotliwością nawet do 300 GHz, ale wycieki prądu powodują, że tranzystory takie nie mogą być zbyt gęsto upakowane. Natychmiast uległyby bowiem stopieniu.
      Naukowcy z Manchesteru zaproponowali interesujące rozwiązanie problemu. Ich zdaniem należy stworzyć grafenową diodę tunelującą.  W diodzie takiej elektrony tunelują się pomiędzy metalicznymi warstwami za pośrednictwem rozdzielającego je dielektryka.
      Doktor Leonid Ponomarenko, który stał na czele zespołu badawczego, mówi: Stworzyliśmy projekt nowej grafenowej elektroniki. Nasze tranzystory pracują dobrze. Myślę, że można je jeszcze udoskonalić, zminiaturyzować i przystosować do pracy z zegarami taktowanymi z częstotliwościami subterahercowymi.
      Nowe podejście zakłada połączenie warstw grafenu, azotkuboru i disiarczku molidenu. Tranzystory układa się warstwa po warstwie.
      Profesor Geim, jeden z wynalazców grafenu, mówi, że projekt takiego tranzystora to bardzo ważne wydarzenie, ale jeszcze ważniejsze jest prawdopodobnie wykazanie, iż można w skali atomowej układać warstwy.  Drugi wynalazca grafenu, profesor Novoselov dodaje, iż tranzystor tunelowy to jeden z niewyczerpanej gamy urządzeń, które mogą powstać za pomocą układania warstwami.
    • By KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu Kalifornijskiego w Irvine odkryli, w jaki sposób lizozym z łez unieszkodliwia o wiele większe od siebie bakterie. Okazuje się, że enzym dysponuje "szczękami", za pomocą których przegryza się przez rzędy ścian komórkowych.
      Szczęki odgryzają ściany komórkowe bakterii, które próbują się dostać do oczu i wywołać infekcję - tłumaczy prof. Gregory Weiss. Lizozym można porównać do buldoga, który nie chce odpuścić, uczepiwszy się nogawki czyichś spodni. Zasadniczo wycina sobie drogę przez ścianę komórkową bakterii.
      Weiss i prof. Philip Collins rozszyfrowali zachowanie białka, budując jeden z najmniejszych na świecie tranzystorów - 25-krotnie mniejszy od stosowanych w laptopach czy smartfonach. Pojedyncze lizozymy przytwierdzano do obwodu.
      Nasze obwody są mikrofonami wielkości molekuły. To jak stetoskop do osłuchiwania serca, z tym że my słuchaliśmy pojedynczej cząsteczki białka - opowiada Collins.
      Naukowcy przyczepili cząsteczkę enzymu do przymocowanej do obwodu elektrycznego węglowej nanorurki. Kiedy przepuszczono przez niego prąd, nanorurka utworzyła miniaturowy mikrofon. Dzięki temu dało się podsłuchiwać enzym w czasie "przegryzania".
      W miarę jak lizozym przemieszcza się po powierzchni bakterii, wykonuje "chapnięcia", które są połączone z ruchem [na zasadzie odrzutu]. Każde ugryzienie tworzy nową minidziurkę, aż wreszcie powstaje wyrwa [...] i mikrob eksploduje - wyjaśnia Weiss. Wygryzanie zachodzi w stałym rytmie: jeden krok to otwieranie "szczęk", a dwa zamykanie.
      Zespół prowadził eksperymenty na wariantach lizozymu T4. Doprowadzono do ich nadekspresji u bakterii E. coli. Do pałeczek okrężnicy wprowadzono plazmid lizozymu.
      Naukowcy sądzą, że rozwiązanie, nad którym pracowali wiele lat, będzie można wykorzystać w wykrywaniu molekuł nowotworowych. Jeśli będzie można wykryć pojedyncze cząstki związane z nowotworem, oznacza to postawienie diagnozy na bardzo wczesnym etapie. Dysponowanie taką metodą zwiększy liczbę wyleczonych pacjentów i obniży koszty terapii.
    • By KopalniaWiedzy.pl
      Artykuł, opublikowany w Nature Communications przez Hidekiego Hiroriego, zapowiada przełom w budowie urządzeń wykorzystujących tranzystory. Odkrycie japońskich uczonych z Kyoto University może prowadzić do pojawienia się niezwykle szybkich tranzystorów oraz bardzo wydajnych ogniw fotowoltaicznych.
      Naukowcy pracując ze standardowym arsenkiem galu zaobserwowali, że poddanie próbki działaniu krótkiego impulsu pola elektrycznego o częstotliwości przekraczającej teraherc, spowodowało pojawienie się w niej prawdziwej lawiny par elektron-dziura (ekscytonów).
      Wystarczyło włączenie pojedynczego impulsu trwającego pikosekundę, by gęstość ekscytonów, w porównaniu ze stanem wyjściowym próbki, zwiększyła się 1000-krotnie.
      Badania nad zastosowaniem terahercowych częstotliwości prowadzone są w laboratorium profesora Koichiro Tanaki, który chce stworzyć dzięki nim mikroskop pozwalający na obserwowanie w czasie rzeczywistym żywych komórek. Wpływ takich częstotliwości na półprzewodnik to efekt uboczny badań, pokazujący jednak, jak wielkie możliwości drzemią w terahercowych częstotliwościach.
    • By KopalniaWiedzy.pl
      Zdolność przełączania typu kamuflażu to u pewnej kałamarnicy i ośmiornicy kwestia życia i śmierci. Wersja przezroczysta i lekko odbijająca światło dobrze sobie radzi z drapieżnikami, które polując na głębokości 600-1000 m, wypatrują zarysu sylwetki swoich ofiar, natomiast ubarwiona stanowi odpowiedź na metody polowania ryb wyposażonych w fotofor (narząd świetlny).
      Przezroczystość to tryb domyślny zarówno u ośmiornicy Japetella heathi, jak i kałamarnicy Onychoteuthis banksii. Widziane od dołu na podświetlonym tle prawie idealnie wtapiają się w otoczenie. Oczy i jelita, które nie mogą stać się przezroczyste, odbijają światło. Gdy jednak pojawi się błysk błękitnego światła, takim właśnie posłużyłyby się ryby świetlikowate, w skórze następuje uaktywnienie chromatoforów (komórek barwnikowych) i po chwili zwierzęta stają się czerwonobrązowe.
      W zeszłym roku dr Sarah Zylinski z Duke University prowadziła eksperymenty na terenie Rowu Atakamskiego. Osobniki z obu wymienionych wcześniej gatunków wyławiano z oceanu, a po umieszczeniu w zlewce kierowano na nie niebieskie światło LED. Wtedy zwierzęta stawały się nieprzezroczyste. Kiedy światło wyłączano, kałamarnica/ośmiornica natychmiast wracała do trybu domyślnego. W czasie ekspedycji z 2011 r. Zylinski mierzyła współczynnik odbicia ośmiornic z Zatoki Kalifornijskiej i stwierdziła, że u wersji przezroczystej jest on 2-krotnie wyższy niż po uaktywnieniu chromatoforów.
      Amerykanka prowadziła badania na 20 różnych gatunkach głowonogów, ale tylko J. heathi i O. banksii reagowały na niebieskie światło. W odróżnieniu od głowonogów żyjących na mniejszych głębokościach, nie zmieniały kamuflażu pod wpływem przepływających nad nimi cieni drapieżników czy potencjalnie niebezpiecznych obiektów.
      W przyszłości Zylinski zamierza prześledzić zależność między przezroczystością a głębokością, na której znajduje się habitat. Mniejsze młode zwierzęta znajdują się wyżej w kolumnie wody i mają mniej chromatoforów, dlatego bardziej polegają na przezroczystości. Ma to sens, ponieważ na tych głębokościach nie ma ryb wykorzystujących fotofory. Dojrzałe osobniki występują natomiast głębiej i mają więcej chromatoforów.
      Artykuł dr Zylinski i dr. Sonke Johensena ukazał się w piśmie Current Biology.
       
      http://www.youtube.com/watch?v=f0-_tSgtQsA
×
×
  • Create New...