Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Magnetyzm nie taki, jak myślimy?

Rekomendowane odpowiedzi

Zdaniem Rafała Oszwaldowskiego i Igora Zutica z University of Bufallo oraz Andre Petukhowa z South Dakota School of Mines and Technology, magnetyzm w najmniejszej skali podlega nieco innym zasadom niż nam się wydaje. Uczeni opublikowali w Physical Review Letters artykuł, w którym prezentują wyliczenia dowodzące, że możliwe jest stworzenie kropki kwantowej o zaskakujących właściwościach.

Magnetyzm materiału jest określany przez spin elektronów. Jeśli w materiale spin większości z nich zwrócony jest w tę samą stronę, materiał posiada właściwości magnetyczne. Elektrony mogą też działać jak „magnetyczni posłańcy", którzy za pomocą własnego spinu wpływają na spin pobliskich atomów.

Według obecnego stanu wiedzy, jeśli spotkają się dwa elektrony o przeciwnych spinach, to ich wpływ na otoczenie będzie się znosił.

Wspomniani powyżej naukowcy twierdzą jednak, że nie wygląda to tak prosto. Ich zdaniem w kwantowych kropkach można zaobserwować pewien szczególny rodzaj magnetyzmu pojawiający się w obecności elektronów o przeciwnym spinie. W swoim artykule opisali oni teoretyczną kropkę kwantową zawierającą dwa elektrony o przeciwnych spinach oraz atomy manganu umieszczone w ściśle określonych miejscach kropki. Elektrony będą tam działały jak „magnetyczni posłańcy", wpływając na spin pobliskich atomów. Z wyliczeń Oszwaldowskiego, Zutica i Petukhova wynika, ze oba elektrony będą w odmienny sposób działały na atomy. Jeden z nich będzie bowiem preferował lokalizację na środku kropki, a drugi na jej obrzeżach. To spowoduje, że atomy manganu znajdujące się w różnych częściach kropki będą podlegały różnemu wpływowi. Ten elektron, który będzie na atomy wpływał silniej „wygra" i dostosuje ich spin do swojego, dzięki czemu kropka nabierze właściwości magnetycznych.

Igor Zutic zauważa, że jeśli obliczenia się potwierdzą, to całkowicie zmienią naszą wiedzę o interakcjach magnetycznych. Uczony dodaje: gdy mamy dwa elektrony o przeciwnych spinach, założenie jest takie, że pomiędzy nimi będzie istniała równowaga, a zatem żadna magnetyczna wiadomość czyli żadne siły nie wpłyną na spin pobliskich atomów manganu. Ale naszym zdaniem tam zachodzi walka. Podstawowe zasady magnetyzmu są dla nas wciąż tajemnicą i skrywają wiele niespodzianek.

Wyliczeniami już zainteresowali się fizycy z University of Bufallo, którzy chcieliby przeprowadzić odpowiednie eksperymenty.

Twierdzenia Oszwaldowskiego, Zutica i Petukhova, o ile się potwierdzą, mogą mieć olbrzymi wpływ na spintronikę oraz te działy nauki i gospodarki, które wykorzystują właściwości magnetyczne - z więc na obrazowanie medyczne, elektronikę czy budowę laserów.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Po raz pierwszy udało się zrekonstruować w laboratorium falową naturę elektronu, jego funkcję falową Blocha. Dokonali tego naukowcy z Uniwersytetu Kalifornijskiego w Santa Barbara (UCSB), a ich praca może znaleźć zastosowanie w projektowaniu kolejnych generacji urządzeń elektronicznych i optoelektronicznych.
      Elektrony zachowują się jednocześnie jak cząstki oraz jak fala. Ich falowa natura opisywane jest przez naukowców za pomocą obiektów matematycznych zwanych funkcjami falowymi. Funkcje te zawierają zarówno składowe rzeczywiste, jak i urojone. Z tego też powodu funkcji falowej Blocha elektronu nie można bezpośrednio zmierzyć. Można jednak obserwować powiązane z nią właściwości. Fizycy od dawna próbują zrozumieć, w jaki sposób falowa natura elektronów poruszających się przez sieć krystaliczną atomów, nadaje tej sieci właściwości elektroniczne i optyczne. Zrozumienie tego zjawiska pozwoli nam projektowanie urządzeń lepiej wykorzystujących falową naturę elektronu.
      Naukowcy z Santa Barbara wykorzystali silny laser na swobodnych elektronach, który posłuży im do uzyskanie oscylującego pola elektrycznego w półprzewodniku, arsenu galu. Jednocześnie za pomocą lasera podczerwonego o niskiej częstotliwości wzbudzali jego elektrony. Wzbudzone elektrony pozostawiały po sobie „dziury” o ładunku dodatnim. Jak wyjaśnia Mark Sherwin, w arsenku galu dziury te występują w dwóch odmianach – lekkiej i ciężkiej – i zachowują się jak cząstki o różnych masach.
      Para elektron-dziura tworzy kwazicząstkę zwaną ekscytonem. Fizycy z UCSB odkryli, że jeśli utworzy się elektrony i dziury w odpowiednim momencie oscylacji pola elektrycznego, to oba elementy składowe ekscytonów najpierw oddalają się od siebie, następnie zwalniają, zatrzymują się, zaczynają przyspieszać w swoim kierunku, dochodzi do ich zderzenia i rekombinacji. W czasie rekombinacji emitują impuls światła – zwany wstęgą boczną – o charakterystycznej energii. Emisja ta zawiera informacje o funkcji falowej elektronów, w tym o ich fazach.
      Jako, że światło i ciężkie dziury przyspieszają w różnym tempie w polu elektrycznym ich funkcje falowe Blocha mają różne fazy przed rekombinacją z elektronami. Dzięki tej różnicy fazy dochodzi do interferencji ich funkcji falowych i emisji, którą można mierzyć. Interferencja ta determinuje też polaryzację wstęgi bocznej. Może ona być kołowa lub eliptyczna.
      Autorzy eksperymentu zapewniają, że sam prosty stosunek pomiędzy interferencją a polaryzacją, który można zmierzyć, jest wystarczającym warunkiem łączącym teorię mechaniki kwantowej ze zjawiskami zachodzącymi w rzeczywistości. Ten jeden parametr w pełni opisuje funkcję falową Blocha dziury uzyskanej w arsenku galu. Uzyskujemy tę wartość mierząc polaryzację wstęgi bocznej, a następnie rekonstruując funkcję falową, która może się różnić w zależności od kąta propagacji dziury w krysztale, dodaje Seamus O'Hara.
      Do czego takie badania mogą się przydać? Dotychczas naukowcy musieli polegać na teoriach zawierających wiele słabo poznanych elementów. Skoro teraz możemy dokładnie zrekonstruować funkcję falową Blocha dla różnych materiałów, możemy to wykorzystać przy projektowaniu i budowie laserów, czujników i niektórych elementów komputerów kwantowych, wyjaśniają naukowcy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Rozwiązaniem problemu pomiędzy szybkością działania komputerów kwantowych a koherencją kubitów może być zastosowanie dziur, twierdzą australijscy naukowcy. To zaś może prowadzić do powstania kubitów nadających się do zastosowania w minikomputerach kwantowych.
      Jedną z metod stworzenia kubitu – kwantowego bitu – jest wykorzystanie spinu elektronu. Aby uczynić komputer kwantowy tak szybkim, jak to tylko możliwe, chcielibyśmy mieć możliwość manipulowania spinami wyłącznie za pomocą pola elektrycznego, dostarczanego za pomocą standardowych elektrod.
      Zwykle spiny nie reagują na pole elektryczne, jednak z niektórych materiałach spiny wchodzi w niebezpośrednie interakcje z polem elektrycznym. Mamy tutaj do czynienia z tzw. sprzężeniem spinowo-orbitalnym. Eksperci zajmujący się tym tematem obawiają się jednak, że gdy taka interakcja jest zbyt silna, wszelkie korzyści z tego zjawiska zostaną utracone, gdyż dojdzie do dekoherencji i utraty kwantowej informacji.
      Jeśli elektrony zaczynają wchodzić w interakcje z polami kwantowymi, które im aplikujemy w laboratorium, są też wystawione na niepożądane zmienne pola elektryczne, które istnieją w każdym materiale. Potocznie nazywamy to „szumem”. Ten szum może zniszczyć delikatną informację kwantową, mówi główny autor badań, profesor Dimi Culcer z Uniwersytetu Nowej Południowej Walii.
      Nasze badania pokazują jednak, że takie obawy są nieuzasadnione. Nasze teoretyczne badania wykazały, że problem można rozwiązać wykorzystując dziury – które można opisać jako brak elektronu – zachowujące się jak elektrony z ładunkiem dodatnim, wyjaśnia uczony.
      Dzięki wykorzystaniu dziur kwantowy bit może być odporny na fluktuacje pochodzące z tła. Co więcej, okazało się, że punkt, w którym kubit jest najmniej wrażliwy na taki szum, jest jednocześnie punktem, w którym działa on najszybciej. Z naszych badań wynika, że w każdym kwantowym bicie utworzonym z dziur istnieje taki punkt. Stanowi to podstawę do przeprowadzenia odpowiednich eksperymentów laboratoryjnych, dodaje profesor Culcer.
      Jeśli w laboratorium uda się osiągnąć te punkty, będzie można rozpocząć eksperymenty z utrzymywaniem kubitów najdłużej jak to możliwe. Będzie to też stanowiło punkt wyjścia do skalowania kubitów tak, by można było je stosować w minikomputerach.
      Wiele wskazuje na to, że takie eksperymenty mogą zakończyć się powodzeniem. Profesor Joe Salfi z University of British Columbia przypomina bowiem: Nasze niedawne eksperymenty z kubitami utworzonymi z dziur wykazały, że w ich wypadku czas koherencji jest dłuższy, niż się spodziewaliśmy. Teraz widzimy, że nasze obserwacje mają solidne podstawy teoretyczne. To bardzo dobry prognostyk na przyszłość.
      Praca Australijczyków została opublikowana na łamach npj Quantum Information.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Znajdujący się na Biegunie Południowym wielki detektor neutrin IceCube zarejestrował wysokoenergetyczne wydarzenie, które potwierdziło istnienie zjawiska przewidzianego przed 60 laty i wzmocniło Model Standardowy. Wydarzenie to zostało wywołane przez cząstkę antymaterii o energii 1000-krotnie większej niż cząstki wytwarzane w Wielkim Zderzaczu Hadronów (LHC).
      Ponad 4 lata temu, 8 grudnia 2016 roku wysokoenergetyczne antyneutrino elektronowe wpadło z olbrzymią prędkością w pokrywę lodową Antarktydy. Jego energia wynosiła gigantyczne 6,3 petaelektronowoltów (PeV). Głęboko w lodzie zderzyło się ono z elektronem, doprowadzając do pojawienia się cząstki, która szybko rozpadła się na cały deszcz cząstek. Ten zaś został zarejestrowany przez czujniki IceCube Neutrino Observatory.
      IcCube wykrył rezonans Glashowa, zjawisko, które w 1960 roku przewidział późniejszy laureat Nagrody Nobla, Sheldon Glashow. Pracujący wówczas w Instytucie Nielsa Bohra w Kopenhadze naukowiec opublikował pracę, w której stwierdził, że antyneutrino o odpowiedniej energii może wejść w interakcje z elektronem, w wyniku czego dojdzie do pojawienia się nieznanej jeszcze wówczas cząstki. Cząstką tą był odkryty w 1983 roku bozon W.
      Po odkryciu okazało się, że ma on znacznie większą masę, niż przewidywał Glashow. Wyliczono też, że do zaistnienia rezonansu Glashowa konieczne jest antyneutrino o energii 6,3 PeV. To niemal 1000-krotnie większa energia niż nadawana cząstkom w Wielkim Zderzaczu Hadronów. Żaden obecnie działający ani obecnie planowany akcelerator nie byłby zdolny do wytworzenia tak wysokoenergetycznej cząstki.
      IceCube pracuje od 2011 roku. Dotychczas obserwatorium wykryło wiele wysokoenergetycznych zdarzeń, pozwoliło na przeprowadzenie niepowtarzalnych badań. Jednak zaobserwowanie rezonansu Glashowa to coś zupełnie wyjątkowego. Musimy bowiem wiedzieć, że to dopiero trzecie wykryte przez IceCube wydarzenie o energii większej niż 5 PeV.
      Odkrycie jest bardzo istotne dla specjalistów zajmujących się badaniem neutrin. Wcześniejsze pomiary nie dawały wystarczająco dokładnych wyników, by można było odróżnić neutrino od antyneutrina. To pierwszy bezpośredni pomiar antyneutrina w przepływających neutrinach pochodzenia astronomicznego, mówi profesor Lu Lu, jeden z autorów analizy i artykułu, który ukazał się na łamach Nature.
      Obecnie nie jesteśmy w stanie określić wielu właściwości astrofizycznych źródeł neutrin. Nie możemy np. zmierzyć rozmiarów akceleratora czy mocy pól magnetycznych w rejonie akceleratora. Jeśli jednak będziemy w stanie określić stosunek neutrin do antyneutrin w całym strumieniu, bo będziemy mogli badać te właściwości, dodaje analityk Tianlu Yaun z Wisconsin IceCube Particle Astrophysics Center.
      Sheldon Glashow, który obecnie jest emerytowanym profesorem fizyki na Boston University mówi, że aby być absolutnie pewnymi wyników, musimy zarejestrować kolejne takie wydarzenie o identycznej energii. Na razie mamy jedno, w przyszłości będzie ich więcej.
      Niedawno ogłoszono, że przez najbliższych kilka lat IceCube będzie udoskonalany, a jego kolejna wersja – IceCube-Gen2 – będzie w stanie dokonać większej liczby tego typu pomiarów.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W tzw. magnetyczny grafenie zauważono nieznany dotychczas rodzaj magnetyzmu. Jego odkrycie pomoże lepiej zrozumieć zjawisko nadprzewodnictwa w tym niezwykłym materiale. Odkrycia dokonali naukowcy z University of Cambridge, którym udało się kontrolować przewodnictwo i magnetyzm tiofosforanu żelaza (FePS3), dwuwymiarowego materiału, który gdy jest ściskany zmienia swoje właściwości z izolujących po przewodzące.
      Brytyjczycy, wykorzystując wysokie ciśnienie, wykazali,, co dzieje się w magnetycznym grafenie podczas przejścia z izolatora do przewodnika oraz w jego stanie metalicznym. Badania wykazały, że podczas przechodzenia w metal materiał nie traci swoich właściwości magnetycznych. Może to być wskazówką, jak działa przewodnictwo elektryczne w metalach. Nowo odkryta faza magnetyczna może być prekursorem nadprzewodnictwa, zatem odkrycie może mieć kolosalne znacznie dla zrozumienia teo zjawiska.
      Autorzy badań sugerują też metodę przygotowywania materiału tak, by był zarówno przewodnikiem, jak i wykazywał właściwości magnetyczne, co może być przydatne w rozwoju nowych technologii np. spintroniki.
      Wiemy, że właściwości materii mogą ulegać znaczącym zmianom pod wpływem zmian w strukturze atomowej i jej organizacji przestrzennej. Na przykład grafen, diament, węglowe nanorurki i grafit wszystkie są zbudowane z atomów węgla, jednak dzięki różnej strukturze mają odmienne właściwości.
      Wyobraźmy sobie, że możemy zmienić wszystkie te właściwości dodają magnetyzm. Materiał, który były elastyczny pod względem mechanicznym i pozwoliłby na utworzenie nowych obwodów służących przechowywaniu informacji i przeprowadzaniu obliczeń. To dlatego właśnie materiały te są tak interesujące. Gdy poddamy je wysokiemu ciśnieniu możemy w sposób kontrolowany zmieniać ich zachowanie, mówi główny autor badań, Matthew Coak z Cavendish Laboratory na University of Cambridge.
      Już podczas wcześniejszych badań Sebastian Haines z Cavendish Laboratory stwierdził, że tiofosforan żelaza poddany wysokiemu ciśnieniu zmienia się metal. Opisał też jego strukturę krystaliczną oraz zachodzące w niej zmiany. Brakowało jednak badań nad magnetyzmem, stwierdza Coak. Jako, że nie istniała żadna technika, która pozwalałaby badać magnetyzm w tym materiale przy tak wysokim ciśnieniu, musieliśmy opracować własną metodę, dodaje.
      Zespół Coaka, po opracowaniu odpowiedniej techniki, zaczął przyglądać się, co dzieje się z magnetyzmem FePS3 poddawanemu coraz większemu ciśnieniu. Ku naszemu zdumieniu właściwości magnetyczne zostały zachowane, nawet w pewien sposób uległy wzmocnieniu. To niespodziewane zjawisko, gdyż nowe swobodnie poruszające się elektrony w nowym materiale przewodzącym nie mogą być już ściśle związane ze swoimi atomami żelaza, tworząc tam moment magnetyczny.
      Nie wiemy dokładnie, co dzieje się tam na poziomie kwantowym, ale możemy tym manipulować. Otworzyliśmy drzwi, przez które możemy podejrzeć pewne właściwości, ale jeszcze nie wiemy, co to za właściwości, mówi doktor Siddharth Saxena.
      Szczegóły badań zostały opisane w artykule Emergent Magnetic Phases in Pressure-Tuned van der Waals Antiferromagnet FePS3.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      O grafenie piszemy od lat, a przed kilkunastoma miesiącami informowaliśmy o powstaniu grafanu. Teraz do rodziny dołączył trzeci jej członek - grafyn.
      Symulacje komputerowe przeprowadzone przez niemieckich uczonych wskazują na możliwość istnienia pojedynczej warstwy atomów węgla, które jednak nie muszą być ułożone w kształcie sześciokąta, a mogą przyjmować bardzo różne formy. Nowy materiał może być zatem znacznie bardziej elastyczny niż grafen.
      Jak pamiętamy, energia elektronów poruszających się w grafenie jest wprost proporcjonalna do momentu pędu. Gdy energie takich elektronów przedstawimy na trójwymiarowym wykresie otrzymamy stożek Diraca. Te unikatowe właściwości grafenu powodują, że elektrony zachowują się w nim tak, jakby nie miały masy, co pozwala im na poruszanie się z niezwykle dużą prędkością, a to może być bardzo pożądaną cechą np. w elektronice.
      Grafyn tym różni się od grafenu, który ma pojedyncze lub podwójne wiązania, iż tworzy podwójne i potrójne wiązania, a atomy węgla nie układają się heksagonalnie.
      Niemieccy uczeni, wśród nich chemik Andreas Görling z Uniwersytetu Erlangen-Nuremberg, prowadzili komputerowe symulacje trzech różnych wzorców, w jakie mogą układać się atomy węgla w grafynie i odkryli, że we wszystkich mamy do czynienia ze stożkiem Diraca. Jednak, co ważniejsze, okazało się, że jeden z badanych wzorów 6,6,12 grafyn, w którym atomy węgla charakteryzuje prostokątna symetria, przewodzi elektrony tylko w jednym kierunku. Taki materiał nie potrzebowałby domieszkowania innymi pierwiastkami, by wykazywać właściwości pożądane w elektronice.
      W przeszłości uzyskiwano już niewielkie skrawki grafynu. Teraz niemieckie badania dowiodły, że warto pracować nad tym materiałem i różnymi jego odmianami.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...