Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Jowisz okradł Marsa z budulca

Recommended Posts

Naukowcy od dawna zastanawiali się, dlaczego Mars jest o połowę mniejszy od Ziemi i waży dziesięciokrotnie mniej. Obie planety powstawały prawdopodobnie w tym samym czasie, zatem taka różnica jest dziwna.

W piśmie Nature pojawiło się właśnie pierwsze spójne wyjaśnienie tej zagadki, które przy okazji zdradza nam wiele na temat wczesnych stadiów życia Jowisza i Saturna.

Badania wyjaśniające tajemnicę Marsa prowadził międzynarodowy zespół kierowany przez doktora Kevina Walsha z Southwest Research Institute (SwRI). Symulacje pokazały, w jaki sposób Jowisz mógł przemieścić się o 1,5 jednostki astronomicznej i pobrać znajdujący się bliżej Słońca materiał tak, że nie wystarczyło go na pełne uformowanie się Marsa.

Jeśli Jowisz przesunął się od miejsca swoich narodzin o 1,5 j.a. w kierunku Słońca, a następnie wrócił na swoje miejsce gdy powstał Saturn - jak to przewidują inne modele - mógł on zabrać materiał znajdujący się w odległości około 1 j.a. od Słońca i stąd mała masa Marsa. Problem jednak w tym,  jak taka ewentualna wędrówka Jowisza może pozostawać w zgodzie z istnieniem pasa asteroidów. Aby to zbadać rozpoczęliśmy symulacje zakrojone na szeroką skalę - mówi Walsh.

Wyniki były fantastyczne. Symulacje wykazały nie tylko, że migracja Jowisza nie przeszkadza w istnieniu pasa asteroidów, ale pozwala wyjaśnić pewne właściwości pasa, których dotychczas nie rozumieliśmy - dodaje uczony.

Zespół Walsha wykazał, że przejście Jowisza przez pas asteroidów najpierw go zubożyło, a jego powrót - wzbogacił pas. Stąd spotykamy w nim obecnie dwa typy asteroidów - suche oraz bogate w wodę.

Symulację uczonych wydaje się potwierdzać też i to, co obecnie obserwujemy w innych systemach planetarnych. Gazowe giganty znajdują się w bardzo różnych odległościach od swoich gwiazd, co wskazuje, że rzeczywiście mogą wędrować.

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Znamy 79 księżyców Jowisza, a teraz 5 z nich zyskało oficjalne nazwy. Wszyscy słyszeliśmy o Io, Europie, Kallisto i Ganimedesie, które szczególnie interesują naukowców. Jednak własne nazwy ma jeszcze 49 kolejnych księżyców, a 26 oczekuje na ich nadanie. Nazwy dla 5 z nich zostały właśnie oficjalnie zaakceptowane przez Międzynarodową Unię Astronomiczną.
      W lipcu 2018 roku Scott Sheppard i jego koledzy z Carnegie Institution for Science poinformowali, że odkryli 12 nieznanych wcześniej księżyców Jowisza. Po takim odkryciu księżyce zyskały nazwy numeryczne, a odkrywcom przysługuje prawo do nadania im nazw, które jednak muszą zostać zaakceptowane przez Międzynarodową Unię Astronomiczną.
      Dla każdej z planet istnieje lista warunków, jakie muszą spełniać nazwy ich księżyców. W przypadku Jowisza księżyce można nazywać pochodzącymi z mitologii greckiej i rzymskiej imionami kochanek lub potomków Jowisza/Zeusa. Poza tymi podstawowymi istnieje też wiele innych zasad, dotyczących np. maksymalnej długości nazwy czy ostatniej litery w nazwie, która zależy od kierunku orbity księżyca. Sheppard i jego zespół postanowili poprosić o pomoc opinię publiczną i pomiędzy lutym a kwietnie bieżącego roku zbierali propozycje i wybrali z nich te, które następnie przedstawili do akceptacji Międzynarodowej Unii Astronomicznej.
      Zgodnie z tymi zasadami księżyc S/2017 J4 nazywa się obecnie Pandia. To córka Zeusa i bogini Księżyca Seleny. Pandia jest boginią pełni księżyca i siostrą Ersy, która również zyskała właśnie swój księżyc. Imieniem Ersa został bowiem nazwany S/2018 J1. Ersa to bogini rosy porannej.
      Księżyc S/2003 J5 zyskał imię Ejrene. Ta córka Zeusa i Temidy jest boginią pokoju. Filofrozyna, wnuczka Zeusa, personifikacja cnoty orfickiej, otrzymała księżyc znany dotychczas jako S/2003 J15, a jej siostrze Eufeme przypadł w udziale S/2003 J3.
      Małe księżyce Jowisza, takie jak pięć wspomnianych, to najprawdopodobniej pozostałości po większych obiektach, które rozpadły się w wyniku zderzeń. Jeśli uda się odnaleźć je wszystkie, będzie możliwe odtworzenie oryginalnego układu księżyców Jowisza.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Podczas formowania się Układu Słonecznego mogło dość często dochodzić do zderzeń tworzących się planet. Podczas jednej z takich kolizji powstał ziemski Księżyc. Jednak to, co spotkało Jowisza jest czymś wyjątkowym.
      Astronomowie z amerykańskiego Rice University i chińskiego Uniwersytetu Sun Jat-sena uważaja, że znaleźli wyjaśnienie dziwnych wyników pomiarów pola grawitacyjnego Jowisza dostarczonych przez sondę Juno.
      Wiodące teorie dotyczące formowania się planet mówią, że Jowisz rozpoczął swoje życie jako gęsta skalista lub lodowa planeta i z czasem zyskał olbrzymią warstwę bardzo gęstej atmosfery złożonej z gazów i pyłów z rodzącego się Układu Słonecznego. Jednak odczyty z Juno wskazują, że jądro Jowisza jest znacznie większe i mniej gęste, niż w takim scenariuszu. To było zastanawiające. Wskazywało, że coś się stało z jądrem. W grę wchodzi wielka kolizja, mówi współautor badań Andrea Isella z Rice University.
      Uczony przyznaje, że bardzo sceptycznie podszedł do hipotezy głównego autora badań, Shanga-Fei Liu, mówiącej o zderzeniu, które rozbiło jądro Jowisza i wymieszało je z rzadszymi częściami planety. To brzmiało bardzo nieprawdopodobnie. Jednak Shang-Fei przekonał mnie, za pomocą wielu obliczeń, że nie jest to nieprawdopodobne, stwierdził Isella.
      Naukowcy przeprowadzili tysiące symulacji komputerowych i stwierdzili, że szybko rosnący Jowisz zaburzył orbity pobliskich protoplanet. Uruchomiono więc kolejne symulacje, by sprawdzić, jakie – w różnych warunkach – było prawdopodobieństwo, że doszło do kolizji. Okazało się, że podczas pierwszych kilku milionów lat swojego istnienia Jowisz mógł z co najmniej 40-procentowym prawdopodobieństwem zderzyć się z rodzącą się planetą i ją wchłonął. Modelowanie komputerowe wykazało, że gdyby Jowisz wciągnął planetę o masę Ziemi, opadałaby ona na jego jądro i rozpadłaby się w gęstej atmosferze. Jądro Jowisza pozostałoby nietknięte. Jedyny scenariusz, wyjaśniający, dlaczego obecnie jądro Jowisza wygląda tak, jak obecnie, zakłada, że protoplaneta, z którą się zderzył, miała masę około 10-krotnie większą od masy Ziemi, mówi Liu.
      Obliczenia wskazują, że tak masywna protoplaneta rozbiła jądro Jowisza. Jeśli nawet do tego wydarzenia doszło 4,5 miliarda lat temu, to potrzeba będzie kolejnych miliardów lat, by jądro Jowisza powróciło do stanu sprzed zderzenia, mówi Isella.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Ludzie od dawna marzą o terraformowaniu Marsa. Już w 1971 roku Carl Sagan zaproponował roztopienie lodu biegunie północnym Marsa i wytworzenie w ten sposób atmosfery. To zainspirowało do badań innych naukowców, którzy musieli odpowiedzieć na podstawowe pytanie: czy na Marsie istnieje wystarczająco dużo wody i gazów cieplarnianych, by możliwe było zwiększenie ciśnienia i temperatury na całej planecie. W 2018 roku nadeszło olbrzymie rozczarowanie. Finansowane przez NASA badania wykazały, że wszystkie zasoby Marsa wystarczyłyby do zwiększenia ciśnienia atmosferycznego zaledwie do poziomu 7% ciśnienia na Ziemi. Wydaje się więc, że terraformowanie całego Marsa jest nierealne.
      Teraz naukowcy z Harvard University, Jet Propulsion Laboratory oraz University of Edinburgh wpadli na pomysł, by nie działać na skalę całej planety, a regionalnie.
      W Nature Astronomy opublikowali artykuł, w którym dowodzą, że możliwe jest stworzenie na Marsie warunków sprzyjających życiu. Ich zdaniem należy wykorzystać aerożel krzemionkowy by wywołać efekt cieplarniany podobny do ziemskiego. Modele komputerowe i eksperymenty wykazały, że wystarczy nakryć niektóre obszary planety warstwą aerożelu grubości 2–3 centymetrów, by zablokować szkodliwe promieniowanie ultrafioletowe, na stałe podnieść temperaturę powyżej 0 stopni i przepuścić na tyle widzialnego światła, by rośliny mogły prowadzić fotosyntezę. I to wszystko bez potrzeby używania dodatkowego źródła ciepła.
      Regionalne podejście do uczynienia Marsa nadającym się do zamieszkania jest znacznie łatwiej osiągalne niż globalna modyfikacja jego atmosfery, mówi profesor Robin Wordsworth z Harvarda. W przeciwieństwie do wcześniejszych tego typu pomysłów, tutaj mamy projekt, który można stopniowo testować i rozwijać za pomocą technologii i materiałów, które już teraz posiadamy, dodaje.
      Mars to, poza Ziemią, najbardziej przyjazna życiu planeta Układu Słonecznego. Jednak pozostaje nieprzyjazny dla wielu form życia. System tworzenia niewielkich zamieszkałych wysp pozwoliłby na przekształcanie Marsa w kontrolowalny, skalowalny sposób, wyjaśnia Laura Kerber z Jet Propulsion Laboratory.
      Naukowcy przyznają, że ich pomysł opiera się na zjawisku, które już zaobserwowano na Marsie. W przeciwieństwie do czap lodowych na ziemskich biegunach pokrywy lodowe występujące na Marsie to połączenie wody i zamarzniętego CO2. Dwutlenek węgla, jak wiemy, przepuszcza promienie słoneczne i zatrzymuje ciepło. Latem zjawisko to powoduje, że pod pokrywą lodową marsjańskich biegunów tworzą się kieszenie, w których występuje efekt cieplarniany.
      Zaczęliśmy myśleć o tym efekcie cieplarnianym wywoływanym przez zamarznięty dwutlenek węgla i o tym, jak można by go wykorzystać do stworzenia warunków dla istnienia życia na Marsie. Zastanawialiśmy się, czy istnieje materiał, który charakteryzuje się minimalnym przewodnictwem cieplnym, ale przepuszcza dużo światła, wspomina Wordsworth. Wybór naukowców padł na krzemionkowy aerożel, jeden z najdoskonalszych izolatorów stworzonych przez człowieka.
      Aerożele krzemionkowe są w 97% porowate, dzięki czemu światło łatwo się przez nie przedostaje, jednak nanowarstwy ditlenku krzemu zatrzymują promieniowanie podczerwone, znacząco utrudniając przewodnictwo cieplne.
      Aerożel krzemionkowy to obiecujący materiał, gdyż działa pasywnie. Nie wymaga dostarczania energii, nie posiada ruchomych części, które trzeba by konserwować i naprawiać, przez długi czas utrzymuje ciepło, przypomina Kerber.
      Modele komputerowe i eksperymenty wykazały, że jeśli takim aerożelem pokryjemy jakiś obszar znajdujący się na marsjańskich średnich szerokościach geograficznych, to temperatury na tym obszarze wzrosną niemal do poziomu ziemskiego. Wystarczy pokryć odpowiednio duży obszar, a nie będzie potrzeba żadnej innej technologii czy zjawiska fizycznego. Po prostu wystarczy warstwa tego materiału, by utrzymać wodę w stanie ciekłym, wyjaśnia Wordsworth.
      Krzemionkowy aerożel mógłby więc zostać wykorzystany do budowy pomieszczeń mieszkalnych, a nawet samodzielnej biosfery na Marsie.
      Naukowcy mają teraz zamiar przetestować swoje koncepcje na tych obszarach Ziemi, które przypominają Marsa. Mają tutaj do wyboru suche doliny Antarktyki i Chile.
      Profesor Wordsorth przypomina, że gdy zaczniemy poważną dyskusję na temat uczynienia Marsa nadającym się do zamieszkania, będziemy musieli rozważyć też kwestie filozoficzne czy etyczne, dotyczące np. ochrony planety. Jeśli mamy zamiar zaszczepić życie na Marsie, to musimy odpowiedzieć sobie na pytanie, czy już tam nie ma życia. A jeśli jest, to jak to pogodzić. Nie unikniemy takich pytań, jeśli chcemy, by ludzie mieszkali na Marsie.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Przed miliardem lat w Drodze Mlecznej powstała gromada gwiazd. Od tego czasu gwiazdy te przebyły cztery wielkie okrążenia wokół brzegów naszej galaktyki. Jej grawitacja spowodowała, że gromada rozciągnęła się w długą gwiezdną rzekę. Teraz rzeka ta przepływa w odległości zaledwie 330 lat świetlnych od Ziemi. Zdaniem astronomów, pomoże ona oszacować masę drogi Mlecznej.
      Astronomowie od dawna obserwowali te gwiazdy otoczone innymi gwiazdami. Dotychczas nie zdawali sobie jednak sprawy, że należą one do jednej grupy. Dopiero dzięki trójwymiarowej mapie tworzonej przez satelitę Gaia zauważono, że gwiazdy poruszają się razem z niemal tą samą prędkością i w tym samym kierunku. Obecnie rzeka ma 1300 lat świetlnych długości i 160 lat świetlnych szerokości.
      Zidentyfikowanie takiego pobliskiego strumienia jest jak natrafienie na igłę w stogu siana. Astronomowie od dawna patrzyli na ten strumień, spoglądali przez niego, a dopiero teraz dowiedzieliśmy się, że on tam jest, jest kolosalny i znajduje się niezwykle blisko Słońca, mówi João Alves z Uniwersytetu Wiedeńskiego, jeden z autorów badań.
      Kosmos jest pełen takich strumieni. Jednak ich badanie nastręcza kłopotów. Trudno jest bowiem odróżnić gwiazdy należące do strumienia od innych gwiazd. Zwykle też takie strumienie znajdują się znacznie dalej od nas. Zauważenie takiej struktury tak blisko bardzo nam się przyda. Tak nieduża odległość oznacza, że gwiazdy nie świecą zbyt słabo, a ich obraz nie jest zbyt zamazany, by nie można było ich badać. To marzenie każdego astronoma, dodaje Alves.
      Specjaliści mają nadzieję, że gdy dokładnie zbadają, w jaki sposób gromada gwiazd zmienia się w strumień, będą mogli określić, w jaki sposób galaktyki zyskują gwiazdy. Nowe znalezisko jest tym cenniejsze, że w tak dużych i masywnych galaktykach jak Droga Mleczna takie gromady są zwykle rozrywane i gwiazdy podążają w różnych kierunkach. Tymczasem znaleziona gwiezdna rzeka jest na tyle wielka i powiązana na tyle mocno, że pozostała nietknięta przez miliard lat, w czasie których okrążała centrum galaktyki. Nie można też wykluczyć, że należy do niej więcej gwiazd, niż wynika to ze wstępnych danych Gai.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wysłanie człowieka na Marsa wymaga rozwiązania całego szeregu problemów technicznych, a jednym z nich jest samo lądowanie na Czerwonej Planecie. Dotychczas najcięższym obiektem, jaki udało się na niej posadowić jest ważący 1 tonę łazik Curiosity. Tymczasem wysłanie bardziej złożonej misji automatycznej czy w końcu ludzi, będzie wymagało przeprowadzenia miękkiego lądowania obiektu o masie od 5 do 20 ton.
      Christopher G. Lorenz i Zachary R. Putnam są autorami zamówionego przez NASA studium pt. „Entry Trajectory Options for High Ballistic Coefficient Vehicles at Mars”, które opublikowano w Journal of Spacecraft and Rockets.
      Zwykle lądujący obiekt wchodzi w atmosferę Marsa z prędkością około 30 Mach, szybko zwalnia, rozwija spadochrony, a na końcu ląduje za pomocą silników lub poduszek powietrznych. Niestety spadochrony nie skalują się dobrze wraz z rosnącą masą obiektu. Nowy pomysł polega na rezygnacji ze spadochronu i wykorzystaniu większych silników rakietowych, mówi profesor Zach Putnam z University of Illinois at Urbana-Champaign.
      Zaproponowana metoda zakłada, że gdy lądujący obiekt spowolni do prędkości Mach 3 zostaną uruchomione silniki hamujące o ciągu wstecznym, które na tyle go spowolnią, iż będzie mógł bezpiecznie wylądować. Problem jednak w tym, że manewr ten będzie wymagał dużej ilości paliwa. Paliwo to zwiększa masę misji, co z kolei czyni ją znacznie droższą, nie mówiąc już o tym, że to dodatkowe paliwo trzeba wynieść z powierzchni Ziemi, zużywając przy tym jeszcze więcej paliwa. Obecnie nie istnieje system rakietowy zdolny do wyniesienia takiej masy. Ponadto, co równie ważne, każdy kilogram paliwa oznacza kilogram mniej innego ładunku: ludzi, instrumentów naukowych, zaopatrzenia itp. itd.
      Gdy pojazd porusza się z prędkością ponaddźwiękową to jeszcze przed uruchomieniem silników tworzy się siła nośna, którą możemy wykorzystać do sterowania. Jeśli przesuniemy środek ciężkości pojazdu tak, by był on bardziej obciążony z jednej strony, poleci on pod innym kątem. Mamy pewną możliwość kontroli podczas wejścia w atmosferę, obniżania lotu i lądowania. Przy prędkości ponaddźwiękowej możemy użyć siły nośnej do sterowania. Po uruchomieniu silników możemy ich użyć do bardzo precyzyjnego lądowania. Mamy więc do wyboru, albo spalić więcej paliwa, by wylądować z jak największą precyzją, albo nie przejmować się precyzją, oszczędzić paliwo i wysłać tam jak najcięższy pojazd, albo też znaleźć złoty środek pomiędzy tymi rozwiązaniami, wyjaśnia Putnam.
      Zatem główne pytanie brzmi, jeśli wiemy, że będziemy uruchamiać silniki hamujące przy, powiedzmy, Mach 3, to jak powinniśmy sterować pojazdem by zużyć jak najmniej paliwa a zmaksymalizować masę ładunku. Wysokość, na jakiej uruchomimy silniki hamujące jest niezwykle ważna w celu maksymalizacji masy ładunku, jaką możemy wysłać. Ale również ważny jest kąt wektora prędkości pojazdu względem horyzontu, innymi słowy, jak ostro pojazd będzie nurkował, dodaje uczony.
      Putnam i Lorenz przeprowadzili wyliczenia, które dały odpowiedź na pytanie o sposób najlepszego użycia siły nośnej i optymalne techniki kontroli przy maksymalnej masie pojazdu w zależności od konfiguracji pojazdu, warunków atmosferycznych oraz szerokości geograficznej na jakiej będzie on lądował.
      Okazuje się, że najlepszym rozwiązaniem jest wejście w atmosferę tak, by wektor siły nośnej był skierowany w dół. Potem, w odpowiednim momencie, opierając się na czasie lub prędkości, należy podnieść wektor siły nośnej tak, by wyciągnąć pojazd z lotu nurkowego i żeby leciał on równolegle do planety na niskiej wysokości. Dzięki temu pojazd spędzi więcej czasu tam, gdzie atmosfera jest gęstsza, więc dodatkowo wyhamuje, dzięki czemu zaoszczędzimy paliwo potrzebne silnikom do lądowania.

      « powrót do artykułu
×
×
  • Create New...