Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Skończył się holocen, rozpoczęla nowa epoka geologiczna?
dodany przez
KopalniaWiedzy.pl, w Nauki przyrodnicze
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Wszystkie duże planety Układu Słonecznego posiadają pierścienie, w kręgach naukowych pojawiaj się sugestie, że pierścienie mógł posiadać Mars. To rodzi pytanie o ewentualne pierścienie wokół Ziemi. Naukowcy z australijskiego Monash University znaleźli pierwsze dowody sugerujące, że nasza planeta również posiadała pierścień. Uczeni przyjrzeli się 21 kraterom uderzeniowym pochodzącym z trwającego ok. 40 milionów lat okresu intensywnych bombardowań Ziemi przez meteoryty, do których doszło w ordowiku.
Początek tego okresu wyznacza znaczny wzrost materiału pochodzącego z chondrytów L (chondryty oliwinowo-hiperstenowe), które znajdują się w warstwie sprzed 465,76 ± 0,30 milionów lat. Od dawna przypuszcza się, że bombardowanie to było spowodowane przez rozpad z pasie asteroid dużego obiektu zbudowanego z chondrytów L.
Uczeni z Monash zauważyli, że wszystkie badane przez nich kratery uderzeniowe znajdowały się w ordowiku w pasie wokół równika, ograniczonym do 30 stopni szerokości północnej lub południowej. Tymczasem aż 70% kraterów uderzeniowych na Ziemi powstało na wyższych szerokościach geograficznych. Zdaniem uczonych, prawdopodobieństwo, że asteroidy, po których pozostały wspomniane kratery, pochodziły z pasa asteroid, wynosi 1:25 000 000. Dlatego też zaproponowali inną hipotezę.
Andrew G. Tomkins, Erin L. Martin i Peter A. Cawood uważają, że około 466 milionów lat temu od przelatującej w pobliżu Ziemi asteroidy, w wyniku oddziaływania sił pływowych planety, oderwał się duży fragment, który rozpadł się na kawałki. Materiał ten utworzył pierścień wokół Ziemi. Stopniowo fragmenty pierścienia zaczęły opadać na planetę.
Ponadto proponujemy, że zacienienie Ziemi przez pierścień było powodem pojawienia się hirnantu, piszą autory badań. Hirnant to krótkotrwały ostatni wiek późnego ordowiku. Jego początki wiązały się z ochłodzeniem klimatu, zlodowaceniem i znacznym spadkiem poziomu oceanów.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Tysiące kilometrów pod naszymi stopami, wewnątrz płynnego jądra Ziemi, znajduje się nieznana dotychczas struktura, donoszą naukowcy z Australian National University (ANU). Struktura ma kształt torusa (oponki), znajduje się na niskich szerokościach geograficznych i jest równoległa do równika. Nikt wcześniej jej nie zauważył.
Jądro Ziemi składa się z dwóch warstw, sztywnej wewnętrznej oraz płynnej zewnętrznej. Nowo odkryta struktura znajduje się w górnych partiach jądra zewnętrznego, gdzie jądro spotyka się z płaszczem ziemskim.
Współautor badań, geofizyk Hrvoje Tkalčić mówi, że fale sejsmiczne wędrują wolniej w nowo odkrytym regionie, niż w reszcie jądra zewnętrznego. Region ten znajduje się na płaszczyźnie równikowej, na niskich szerokościach geograficznych i ma kształt donuta. Nie znamy jego dokładnej grubości, ale uważamy, że rozciąga się on na kilkaset kilometrów poniżej granicy jądra i płaszcza, wyjaśnia uczony.
Uczeni z ANU podczas badań wykorzystali inną technikę niż tradycyjne obserwacje fal sejsmicznych w ciągu godziny po trzęsieniu. Badacze przeanalizowali podobieństwa pomiędzy kształtami fal, które docierały do nich przez wiele godzin od wstrząsów. Zrozumienie geometrii rozprzestrzeniania się fal oraz sposobu, w jaki przemieszczają się przez jądro zewnętrzne, pozwoliło nam zrekonstruować czasy przejścia przez planetę i wykazać, że ten nowo odkryty region sejsmiczny cechuje wolniejsze przemieszczanie się fal, stwierdza Tkalčić.
Jądro zewnętrzne zbudowane jest głównie z żelaza i niklu. To w nim, dzięki ruchowi materiału, powstaje chroniące Ziemię pole magnetyczne, które umożliwiło powstanie złożonego życia. Naukowcy sądzą, że szczegółowe poznanie budowy zewnętrznego jądra, w tym jego składu chemicznego, jest kluczowe dla zrozumienia pola magnetycznego i przewidywania tego, kiedy może potencjalnie osłabnąć.
Nasze odkrycie jest istotne, gdyż wolniejsze rozprzestrzenianie się fal sejsmicznych w tym regionie wskazuje, że znajduje się tam dużo lekkich pierwiastków. Te lżejsze pierwiastki, wraz z różnicami temperatur, pomagają w intensywnym mieszaniu się materii tworzącej jądro zewnętrzne. Pole magnetyczne to podstawowy element potrzebny do podtrzymania istnienia życia na powierzchni planety, zwraca uwagę profesor Tkalčić.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Międzynarodowy zespół naukowy wybrał miejsce, które najlepiej reprezentuje rozpoczęcie nowej epoki geologicznej w dziejach Ziemi – antropocenu. Anthropocene Working Group (Grupa Robocza ds. Antropocenu) zaproponowała, by wzorzec granicy wyznaczający początek antropocenu znajdował się w osadach Crawford Lake w Kanadzie. Wzorce pomiędzy epokami geologicznymi są wyznaczane i rejestrowane od 1977 roku przez Międzynarodową Komisję Stratygrafii przy Międzynarodowej Unii Nauk Geologicznych. Wyznacza się je we wzorcowych profilach osadów i określa mianem wzorca GSSP (Global Boundary Stratotype Section and Point).
Od pewnego czasu część geologów proponuje, by uznać, że żyjemy w nowej epoce geologicznej, antropocenie. Cechą charakterystyczną tej epoki ma być uzyskanie przez człowieka dominującego wpływu na klimat i środowisko Ziemi.
W związku z tą koncepcją pojawiły się w środowisku geologów pytania, kiedy antropocen się zaczął, jakie mamy dowody na jego istnienie oraz czy wpływ człowieka na planetę jest na tyle istotny, by wyznaczać nową epokę geologiczną. Zwykle epoki trwają miliony lat. By odpowiedzieć na te pytania Międzynarodowa Komisja Stratygrafii powołała Anthropocene Working Group.
Osady z dna Crawford Lake zawierają znakomity zapis zmian środowiskowych na przestrzeni ostatnich tysiącleci. Sezonowe zmiany składu chemicznego wody i ekologii utworzyły coroczne warstwy, które możemy próbkować za pomocą różnorodnych markerów, by badać historyczną działalność człowieka. To właśnie możliwość dokładnego zapisywania i przechowywania informacji w postaci archiwum geologicznego jest cechą, dla której miejsca takie jak Crawford Lake są tak ważne. GSSP jest wykorzystywany do skorelowania podobnych zmian środowiskowych widocznych w innych miejscach na całym świecie, mówi sekretarz Anthropocene Working Group, doktor Simon Turner z University College London.
Naukowcy badali osady zebrane w różnych typach środowiska na całym świecie, od raf koralowych po rdzenie lodowców. Próbki były badane pod kątem obecności kluczowego wskaźnika wpływu człowieka na środowisko – obecności plutonu. Pluton pokazuje nam, kiedy ludzkość stała się tak dominującą siłą, że pozostawiła w zapisie geologicznym unikatowy „odcisk palca”, mówi profesor Andrew Cundy.
W naturze pluton występuje w ilościach śladowych. Jednak na początku lat 50., gdy przeprowadzono pierwsze próby z bombą wodorową, widzimy bezprecedensowy wzrost i szczyt poziomu plutonu w próbkach z całego świata. Później od połowy lat 60., gdy w życie wszedł Układ o zakazie prób broni nuklearnej, widoczny jest spadek poziomu plutonu, wyjaśnia Cundy. Innymi wskaźnikami geologicznymi ludzkiej aktywności są wysoki poziom popiołów z elektrowni węglowych, wysoka koncentracja metali ciężkich oraz obecność plastiku. Wskaźniki te zaczęły gwałtownie rosnąć w połowie XX wieku i wciąż utrzymują się na wysokim poziomie.
Spośród setek analizowanych próbek to właśnie osady z Crawford Lake uznano za wzorcowe i zaproponowane jako GSSP. Teraz wspierające tę ocenę dowody zostaną przedstawione Międzynarodowej Komisji Stratygrafii, a ta w przyszłym roku zdecyduje, czy uznać antropocen za nową epokę geologiczną.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Reintrodukcja bobrów, niedźwiedzi czy żubrów znacząco poprawiłaby stan światowych ekosystemów. Zamówiony przez ONZ raport wykazał, że przywrócenie dużych ssaków może pomóc w walce z ociepleniem klimatu, poprawi stan zdrowia ekosystemów i przywróci bioróżnorodność. By osiągnąć ten cel w skali świata wystarczy reintrodukcja zaledwie 20 gatunków, których historyczne zasięgi zostały dramatycznie zredukowane przez człowieka.
Jeśli pozwolimy powrócić tym zwierzętom, to dzięki ich obecności pojawią się warunki, które z czasem spowodują, że gatunki te pojawią się na 1/4 powierzchni planety, a to z kolei rozszerzy zasięgi innych gatunków i odbuduje ekosystemy, dzięki czemu zwiększy się ich zdolność do wychwytywania i uwięzienia węgla atmosferycznego.
Przywracanie gatunków nie jest jednak proste. Pojawia się bowiem zarówno pytanie, który z historycznych zasięgów gatunku należy uznać za pożądany. Niektórzy obawiają się też reintrodukcji dużych drapieżników, jak np. wilki, twierdząc, że niesie to ze sobą zagrożenie dla ludzi i zwierząt hodowlanych. Badania pokazują jednak, że duże drapieżniki, wpływając na roślinożerców, doprowadzają do zwiększenia zarówno pokrywy roślinnej, jak i innych gatunków. Z kolei przywracanie historycznych zasięgów roślinożerców powoduje, że roznoszą oni nasiona, pomagają w obiegu składników odżywczych oraz zmniejszają zagrożenie pożarowe poprzez wyjadanie roślinności.
Autorzy najnowszych badań postanowili sprawdzić, gdzie przywrócenie dużych ssaków przyniosłoby największe korzyści i w jaki sposób można to osiągnąć. Okazało się, że wystarczy reintrodukcja 20 gatunków – 13 roślinożerców i 7 drapieżników – by na całej planecie odrodziła się bioróżnorodność. Te 20 gatunków to niewiele jak na 298 gatunków dużych ssaków żyjących na Ziemi.
Badania wykazały, że obecnie jedynie w 6% obszarów zasięg dużych ssaków jest taki, jak przed 500 laty. Okazuje się również, że tylko w odniesieniu do 16% planety można stwierdzić, że znajdują się tam gatunki ssaków, na których zasięg nie mieliśmy większego wpływu.
Naukowcy przyjrzeli się następnie poszczególnym regionom, by określić, ile pracy trzeba włożyć, by przywrócić w nich bioróżnorodnośc. Okazało się, że w większości Azji północnej, północnej Kanady oraz w częściach Ameryki Południowej i Afryki wystarczyłoby wprowadzić jedynie po kilka gatunków dużych ssaków, by przywrócić bioróżnorodność z przeszłości.
I tak Europie przywrócenie bobra, wilka, rysia, renifera i żubra pozwoliłoby na powrót bioróżnorodności w 35 regionach, w których gatunki te zostały wytępione. Podobnie jest w Afryce, gdzie reintrodukcja hipopotama, lwa, sasebiego właściwego, likaona i geparda doprowadziłaby do dwukrotnego zwiększenia obszarów o zdrowej populacji ssaków w 50 ekoregionach. W Azji, po reintrodukcji tarpana dzikiego oraz wilka w Himalajach doszłoby do zwiększenia zasięgów zdrowych populacji o 89% w 10 ekoregionach. Z kolei w Ameryce Północnej do znacznego poprawienia stanu ekosystemów wystarczyłaby reintrodukcja niedźwiedzia brunatnego, bizona, rosomaka oraz niedźwiedzia czarnego.
Reintrodukcja gatunków miałaby olbrzymie znaczenie nie tylko dla ekosystemu, ale i dla uratowania ich samych. Na przykład jednym ze zidentyfikowanych 20 kluczowych gatunków jest gazelka płocha, występująca na Saharze. Obecnie to gatunek krytycznie zagrożony, na świecie pozostało zaledwie około 200–300 osobników. Największym zagrożeniem dla niej są zaś działania człowieka – polowania i utrata habitatów.
Przywrócenie wielu ze wspomnianych gatunków nie będzie jednak proste. Trzeba by np. zabronić polowań na nie i zapobiegać dalszej utracie habitatu. Ponadto wiele z ekoregionów poprzedzielanych jest granicami państwowymi, więc przywracanie gatunków i bioróżnorodności wymagałoby współpracy międzynarodowej.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Historia naszej planety, to historia 4,5 miliarda lat schładzania się. Dzięki temu, że Ziemia stygnie, uformowała się jej sztywna skorupa i mogło powstać życie. Jednocześnie dzięki temu, że nie wystygła, istnieją takie procesy jak tektonika płyt i wulkanizm. Gdy wnętrze planety wystygnie, te kluczowe procesy zatrzymają się. Nie wiemy jednak, jak szybko nasza planeta się wychładza i kiedy procesy przebiegające w jej wnętrzu zatrzymają się.
Odpowiedzią na te pytania może dać zbadanie przewodnictwa cieplnego minerałów znajdujących się na granicy między jądrem a płaszczem Ziemi. To bardzo ważne miejsce, w którym lepkie skały mają bezpośredni kontakt z płynnym zbudowanym głównie z niklu i żelaza zewnętrznym jądrem. Gradient temperatury pomiędzy jądrem zewnętrznym a płaszczem jest bardzo duży, zatem potencjalnie może tam przepływać sporo ciepła. Warstwa graniczna zbudowana jest głownie z bridgmanitu.
Profesor Motohiko Murakami ze Szwajcarskiego Instytutu Technologicznego w Zurichuy (ETH Zurich) wraz z naukowcami z Carnegie Institute for Science opracowali złożony system pomiarowy, który pozwolił im na wykonanie w laboratorium oceny przewodnictwa cieplnego bridgmanitu w warunkach ciśnienia i temperatury, jakie panują we wnętrzu Ziemi. Wykorzystali przy tym niedawno opracowaną technikę optycznego pomiaru absorpcji diamentu podgrzewanego impulsami laserowymi.
Dzięki tej nowej technice wykazaliśmy, że przewodnictwo cieplne bridgmanitu jest około 1,5-razy większe niż się przyjmuje, mówi profesor Murakami. To zaś wskazuje, że przepływ ciepła pomiędzy jądrem a płaszczem jest większy. A większy przepływ ciepła oznacza, że konwekcja w płaszczu zachodzi szybciej i Ziemia szybciej się ochładza. Tektonika płyt może więc w rzeczywistości spowalniać szybciej, niż się obecnie przyjmuje.
Grupa Murakami wykazała jednocześnie, że szybsze wychładzanie się płaszcza zmieni fazy minerałów na granicy jądra i płaszcza. Schładzający się bridgmanit zmieni się w minerał, który będzie jeszcze efektywniej przewodził ciepło, zatem stygnięcie Ziemi jeszcze bardziej przyspieszy.
Wyniki naszych badań rzucają nowe światło na ewolucję dynamiki Ziemi. Wskazują, że Ziemia, podobnie jak Merkury czy Mars, schładza się szybciej i stanie się szybciej nieaktywna, wyjaśnia Murakami.
Trudno jednak powiedzieć, ile czasu minie zanim ruchy konwekcyjne w płaszczu ustaną. Wciąż wiemy zbyt mało, by określić, kiedy do tego dojdzie, przyznają naukowcy. Żeby się tego dowiedzieć, uczeni muszą najpierw lepiej rozpoznać w czasie i przestrzeni procesy konwekcyjne w płaszczu. Ponadto muszą wiedzieć, jak rozpad pierwiastków radioaktywnych we wnętrzu Ziemi, który jest jednym z głównych źródeł ciepła, wpływa na dynamikę procesów płaszcza.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.