Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Profesor Hwang Jenn-Chang i dwóch studentów z tajwańskiego Narodowego Universytetu Tsing Hua potrzebowali niecałych dwóch lat na opracowanie technologii pozwalającej wykorzystywać jedwab w układach elektronicznych. W ten sposób uzyskali elastyczną elektronikę i już prowadzą z przedstawicielami przemysłu rozmowy o wdrożeniu jej produkcji.

Tajwańska technologia pozwala na zmianę płynnego jedwabiu w membrany działające jak izolatory w tranzystorach cienkowarstwowych.

Olbrzymią zaletą jedwabiu jest jego niska cena, a w miarę obniżania się cen urządzeń, producenci szukają coraz tańszych materiałów do ich produkcji.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Od dekad tranzystory są mniejsze i mniejsze. Dzięki temu w procesorze możemy upakować ich więcej. To zaś najłatwiejszy sposób na zwiększenie wydajności procesora. Powoli zbliżamy się do momentu, w którym nie będziemy już w stanie zmniejszać długości bramki tranzystora. Niewykluczone, że Chińczycy właśnie dotarli do tej granicy.
      Prąd w tranzystorze przepływa pomiędzy źródłem a drenem. Przepływ ten kontrolowany jest przez bramkę, która przełącza się pod wpływem napięcia. Długość bramki to kluczowy czynnik decydujący o rozmiarach tranzystora.
      W ostatnich latach naukowcy zaczęli eksperymentować z nowymi materiałami, z których chcą budować elektronikę przyszłości. W obszarze ich zainteresowań jest na przykład grafen – dwuwymiarowy materiał składający się z pojedynczej warstwy atomów węgla – czy disiarczek molibdenu, czyli warstwa atomów molibdenu zamknięta między dwiema warstwami siarki.
      Teraz specjaliści z Chin wykorzystali te materiały do zbudowania rekordowo małego tranzystora. Długość jego bramki wynosi zaledwie 0,34 nanometra. To tyle, co średnica atomu węgla.
      Nowy tranzystor można porównać do dwóch schodów. Na górnym znajduje się źródło, na dolnym zaś dren. Oba zbudowane są z tytanu i palladu. Powierzchnia schodów działa jak łączący je kanał. Jest ona zbudowana w pojedynczej warstwy disiarczku molibdenu, pod którą znajduje się izolująca warstwa ditlenku hafnu. Wyższy stopień zbudowany jest z wielu warstw. Na samy dole znajduje sie warstwa grafenu, nad nią zaś aluminium pokryte tlenkiem aluminium. Jego zadaniem jest oddzielenie grafenu i disiarczku molibdenu. Jedynym miejscem ich połączenia jest widoczna na grafice niewielka szczelina w wyższym stopniu.
      Gdy bramka zostaje ustawiona w pozycji „on” jej długość wynosi zaledwie 0,34 nm. Autorzy nowego tranzystora twierdzą, że nie uda się tej odległości już bardziej zmniejszyć. Na pewno zaś próba zbudowania jeszcze mniejszych tranzystorów będzie wymagała nowatorskiego podejścia do materiałów dwuwymiarowych.
      Ze szczegółami pracy zespołu z Tsinghua University można zapoznać się na łamach Nature.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Badacze z USA i Chin stworzyli dysk twardy wykorzystujący białka jedwabiu. Urządzenie może przechowywać do 64 GB danych na cal kwadratowy i jest odporne na zmiany temperatury, wilgotność, promieniowanie gamma i silne pola magnetyczne. Nie może ono konkurować prędkością pracy czy gęstością zapisu z tradycyjnymi dyskami twardymi, jednak dzięki swoim unikatowym właściwościom może znaleźć zastosowanie w elektronice wszczepianej do wnętrza ciała.
      Zespół naukowy prowadzony przez Tigera Tao z Chińskiej Akademii Nauk w Szanghaju, Mengkuna Liu z nowojorskiego Stony Brook University oraz Wei Li z University of Texas stworzył specjalny wariant techniki wykorzystującej skaningowy mikroskop pola bliskiego (SNOM), dzięki któremu możliwe stało się zapisanie informacji na warstwie protein jedwabiu.
      Do produkcji dysków posłużył naturalny jedwab, którego wodny roztwór nałożono cienką warstwą na podłoże z krzemu lub złota. Następnie za pomocą SNOM i lasera na jedwabiu zapisano dane, wykorzystując w tym celu wywołane laserem zmiany topologiczne i/lub zmiany fazy jedwabiu. Metoda pozwala na wielokrotne usuwanie i zapisywanie danych.
      Jak mówi Mengkun Liu, technika taka ma wiele zalet. Cienką warstwę jedwabiu można z łatwością nakładać na różne podłoża, w tym na podłoża miękkie oraz o zagiętych kształtach. Dane zapisane na jedwabiu można odczytywać na dwa różne sposoby. Jeden z nich wykorzystuje topografię zapisanego materiału, traktując wzniesienia jako „1”, a brak wzniesień jako „0”. Druga, bardziej innowacyjne metoda, to wykorzystanie lasera do odczytu. Jest to jednak zmodyfikowana technika laserowa. Dzięki zmianie mocy lasera można bowiem uzyskać całą skalę szarości z danego punktu danych, co oznacza,że można w nim zapisać więcej informacji niż binarne „0” i „1”.
      Nie mniej ważną cechą jest fakt, że jedwab, jako materiał organiczny, dobrze łączy się z wieloma systemami biologicznymi, w tym z biomarkerami we krwi. Zatem informacje z tych biomarkerów mogą być zakodowane i przechowywane w bazującym na jedwabiu dysku twardym. Liu już zapowiada, że w najbliższej przyszłości rozpoczną się prace nad zaimplementowaniem nowego dysku w żywym organizmie.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Chińscy archeolodzy potwierdzili, że znaleziony w urnie z czasów neolitycznej kultury Yangshao zwęglony materiał to pozostałości jednej z najstarszych na świecie jedwabnych tkanin. Urnę odkryto na stanowisku Wanggou w prowincji Henan.
      Z pomocą testu ELISA opracowanego przez ekspertów z Chińskiego Narodowego Muzeum Jedwabiu potwierdzono, że zwęglona tkanina z urny to jedwab - powiedział na konferencji prasowej kurator Zhao Feng.
      Gu Wanfa, dyrektor Instytutu Badania Zabytków i Archeologii w Zhengzhou, ujawnił, że w Henanie odkryto klaster ruin z okresu kultury Yangshao sprzed 5-7 tys. lat.
      Tkanina z Wanggou ma 5300-5500 lat. Inne stare potwierdzone przypadki tkaniny jedwabnej pochodzą z czasów kultury Lianghzu i mają 4200-4400 lat - opowiada Gu.
      W książce A History of Chinese Science and Technology (t. II) Wydawnictwa Prasowego Uniwersytetu Jiao Tong w Szanghaju napisano, że w 1958 r. specjaliści zaangażowani w badania archeologiczne prowincji Zhejiang odkryli na stanowisku Qianshanyang (kultura Liangzhu) w Huzhou bambusowy koszyk, w którym znajdowały się m.in. tekstylia. Naukowcy z Instytutu Tekstyliów oraz Uniwersytetu Technologicznego Zhejiangu zidentyfikowali je jako materiał jedwabny, a także jedwabne włókna i wstążki. Później zespół z Instytutu Archeologicznego prowincji odkrył na stanowisku jedwabne wstążki sprzed ok. 4 tys. lat.
      W publikacji mówi się również o innym przypadku - skrawkach jedwabiu i tkanin z materiałów roślinnych sprzed ok. 5500 lat; odkopano je w latach 80. XX w. na neolitycznym stanowisku w Qingtai Village.
      Na stanowisku Wanggou resztki jedwabiu znaleziono w czaszce dziecka. Wanfa uważa, że odkrycie sugeruje, w owym czasie chińska technologia produkcji jedwabiu już raczej dojrzewała, niż dopiero się zaczynała.
      Ponieważ kształt urny nawiązuje do wyglądu kokonu jedwabników, Zhao Feng przypuszcza, że chowając w ten sposób swoich zmarłych, kiedyś ludzie chcieli, by powstali oni z martwych, tak jak dorosły motyl wydostaje się z kokonu.
       


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wynikiem współpracy uczonych z Purdue University, University of New South Wales i University of Melbourne jest najmniejszy tranzystor na świecie. Urządzenie zbudowane jest z pojedynczego atomu fosforu. Tranzystor nie tyle udoskonali współczesną technologię, co pozwoli na zbudowanie zupełnie nowych urządzeń.
      To piękny przykład kontrolowania materii w skali atomowej i zbudowania dzięki temu urządzenia. Pięćdziesiąt lat temu gdy powstał pierwszy tranzystor nikt nie mógł przewidzieć, jaką rolę odegrają komputery. Teraz przeszliśmy do skali atomowej i rozwijamy nowy paradygmat, który pozwoli na zaprzęgnięcie praw mechaniki kwantowej do dokonania podobnego jak wówczas technologicznego przełomu - mówi Michelle Simmons z University of New South Wales, która kierowała pracami zespołu badawczego.
      Niedawno ta sama grupa uczonych połączyła atomy fosforu i krzem w taki sposób, że powstał nanokabel o szerokości zaledwie czterech atomów, który przewodził prąd równie dobrze, jak miedź.
      Gerhard Klimeck, który stał na czele grupy uczonych z Purdue prowadzących symulacje działania nowego tranzystora stwierdził, że jest to najmniejszy podzespół elektroniczny. Według mnie osiągnęliśmy granice działania Prawa Moore’a. Podzespołu nie można już zmniejszyć - powiedział.
      Prawo Moore’a stwierdza, że liczba tranzystorów w procesorze zwiększa się dwukrotnie w ciągu 18 miesięcy. Najnowsze układy Intela wykorzystują 2,3 miliarda tranzystorów, które znajdują się w odległości 32 nanometrów od siebie. Atom fosforu ma średnicę 0,1 nanometra. Minie jeszcze wiele lat zanim powstaną procesory budowane w takiej skali. Tym bardziej, że tranzystor zbudowany z pojedynczego atomu ma bardzo poważną wadę - działa tylko w temperaturze -196 stopni Celsjusza. Atom znajduje się w studni czy też kanale. Żeby działał jak tranzystor konieczne jest, by elektrony pozostały w tym kanale. Wraz ze wzrostem temperatury elektrony stają się bardziej ruchliwe i wychodzą poza kanał - wyjaśnia Klimeck. Jeśli ktoś opracuje technikę pozwalającą na utrzymanie elektronów w wyznaczonym obszarze, będzie można zbudować komputer działający w temperaturze pokojowej. To podstawowy warunek praktycznego wykorzystania tej technologii - dodaje.
      Pojedyncze atomy działające jak tranzystory uzyskiwano już wcześniej, jednak teraz po raz pierwszy udało się ściśle kontrolować ich budowę w skali atomowej. Unikatową rzeczą, jaką osiągnęliśmy, jest precyzyjne umieszczenie pojedynczego atomu tam, gdzie chcieliśmy - powiedział Martin Fuechsle z University of New South Wales.
      Niektórzy naukowcy przypuszczają, że jeśli uda się kontrolować elektrony w kanale, to będzie można w ten sposób kontrolować kubity, zatem powstanie komputer kwantowy.
    • przez KopalniaWiedzy.pl
      Uczeni z University of Manchester wpadli na pomysł, który przybliża moment praktycznego wykorzystania grafenu do budowy komputerów. Grafen jest bardzo obiecującym materiałem, ale sprawia on spory kłopot, gdy... przewodzi elektrony zbyt dobrze. To powoduje, że dochodzi do olbrzymich wycieków prądu z grafenowych urządzeń.
      Co prawda specjaliści zaprezentowali już pojedyncze grafenowe tranzystory, które pracują z częstotliwością nawet do 300 GHz, ale wycieki prądu powodują, że tranzystory takie nie mogą być zbyt gęsto upakowane. Natychmiast uległyby bowiem stopieniu.
      Naukowcy z Manchesteru zaproponowali interesujące rozwiązanie problemu. Ich zdaniem należy stworzyć grafenową diodę tunelującą.  W diodzie takiej elektrony tunelują się pomiędzy metalicznymi warstwami za pośrednictwem rozdzielającego je dielektryka.
      Doktor Leonid Ponomarenko, który stał na czele zespołu badawczego, mówi: Stworzyliśmy projekt nowej grafenowej elektroniki. Nasze tranzystory pracują dobrze. Myślę, że można je jeszcze udoskonalić, zminiaturyzować i przystosować do pracy z zegarami taktowanymi z częstotliwościami subterahercowymi.
      Nowe podejście zakłada połączenie warstw grafenu, azotkuboru i disiarczku molidenu. Tranzystory układa się warstwa po warstwie.
      Profesor Geim, jeden z wynalazców grafenu, mówi, że projekt takiego tranzystora to bardzo ważne wydarzenie, ale jeszcze ważniejsze jest prawdopodobnie wykazanie, iż można w skali atomowej układać warstwy.  Drugi wynalazca grafenu, profesor Novoselov dodaje, iż tranzystor tunelowy to jeden z niewyczerpanej gamy urządzeń, które mogą powstać za pomocą układania warstwami.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...