Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

W kawałku bałtyckiego bursztynu sprzed 40 mln lat doskonale zachowała się para kopulujących roztoczy z wymarłego gatunku Glaesacarus rhombeus. Dziś u wielu gatunków tych pajęczaków współżycie kontrolują samce, tymczasem wtedy dominującą rolę spełniała samica.

Jekaterina Sidorczuk z Instytutu Paleontologii Rosyjskiej Akademii Nauk i Paweł Klimow z Muzeum Zoologii University of Michigan opisali swoje odkrycie w piśmie Biological Journal of the Linnean Society. U tego gatunku to samica sprawowała częściową lub całkowitą kontrolę nad kopulacją – podkreśla Klimow.

Wojna płci nigdy się nie kończy. W przypadku roztoczy współczesne samce zmuszają samice do współżycia, pilnują ich przed oraz po kopulacji i odstraszają konkurentów. Samice odnoszą wymierne ewolucyjne korzyści, gdy mają coś do powiedzenia w kwestii wyboru najlepszych partnerów. Odrzucając przegranych, którzy mogą być skądinąd doskonali w przymuszaniu, unikają bowiem przemocy, częstych kopulacji i stróżowania.

Analiza zawartości bursztynu pokazała, że samce G. rhombeus nie dysponowały narządami pozwalającymi na uczepienie się partnerki (występują one u wielu współczesnych gatunków roztoczy). Samica posługiwała się zaś zlokalizowaną z tyłu wiosłowatą wypustką.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Samice i samce bonobo łączą nietypowe stosunki. To samice decydują kiedy i z kim uprawiają seks. To one zwykle kontrolują zasoby najcenniejszego pokarmu, na przykład świeżo upolowane zwierzę. One jedzą, a samce czekają na swoją kolej. Tymczasem samce bonobo wcale nie są tak łagodne, jak się powszechnie uważa. Ubiegłoroczne badania pokazały, że trzykrotnie częściej niż szympansy angażują się w agresywne zachowania. Jednak ich agresja nie jest skierowana przeciwko samicom.
      Samce bonobo są większe i silniejsze. Zatem jak niemal u wszystkich ssaków, u których samce mają przewagę fizyczną nad samicami, społeczności bonobo powinny być zdominowane przez płeć męską. Tak jednak nie jest.
      Dotychczas nie wiedziano, dlaczego tak się dzieje. Istniały konkurujące ze sobą hipotezy, ale żadnej z nich nigdy nie przetestowano na dziko żyjących bonobo, mówi Bartara Fruth z Instytutu Zachowania Zwierząt im. Maxa Plancka, która od 30 lat prowadzi badania nad bonobo w stacji badawczej LuiKotale. Teraz Fruth we współpracy z Martinem Surbeckiem i innymi naukowcami opublikowała na łamach Communications Biology pierwsze dowody, wyjaśniające zagadkę bonobo.
      Badania pokazały, że samice bonobo tworzą koalicje, by zdominować samce. W aż 85% przypadków gangi samic zostały utworzone po to, by zdominować samce, zmusić je do posłuszeństwa i w ten sposób ustalić hierarchię w grupie. O ile wiemy, to pierwszy przypadek solidarności samic, którego celem jest odwrócenie warunków – w sposób naturalny preferujących samców – w celu zmiany struktury siły typowej dla wielu społeczności ssaków. To niezwykłe obserwować samice, które dzięki wzajemnemu wsparciu, aktywnie wzmacniają swoją pozycję społeczną, mówi Surbeck.
      Naukowcy od 30 lat zbierają dane od sześciu społeczności bonobo zamieszkujących Demokratyczną Republikę Kongo. W tym czasie odnotowano, między innymi, 1786 konfliktów pomiędzy samicami a samcami. Aż 1099 zakończyło się zwycięstwem samic. Analiza tych konfliktów i innych danych społecznych oraz demograficznych pokazała, jakie czynniki stoją za „żeńską siłą” w społecznościach bonobo. Konflikty można wygrywać albo będąc silniejszym, albo mając przy sobie przyjaciół, albo też posiadając coś, co druga strona chce, ale nie może tego wziąć siłą, wyjaśnia Surbeck.
      Dorosłe samice w społecznościach bonobo pochodzą z zewnątrz. Nie są one połączone więzami krwi, nie wychowywały się razem. Zatem odkrycie, że łączą je głębokie więzi i współpracują ze sobą, by dużym zaskoczeniem. Koalicje samic nie powstają często, ale gdy już się utworzą, robią wrażenie. Pierwszą oznaką ich powstania jest krzyk tak głośny, że człowiek musi zatykać uszy, by go znieść. Nie wiadomo, co jest bezpośrednim impulsem do utworzenia koalicji. Takie sojusze powstają bowiem na sekundy przed przystąpieniem samic do działania. Gdy na przykład zauważą, że samiec chce skrzywdzić młode. Na samca rzuca się wówczas cała grupa głośno krzyczących samic. Czasem taki atak może skończyć się śmiercią samca. To dzika demonstracja siły. Od razu wiadomo, dlaczego samce bonobo starają się nie przekraczać pewnych granic, mówi Fruth.
      Uczeni zauważyli, że nie mają tutaj do czynienia z prostą dominacją samic, obraz społeczności bonobo jest bardziej skomplikowany. Pomimo tego, że samice wygrały 61% konfliktów i zdominowały 70% samców, nie jest tak, że zasadą jest, iż dominują. Ich pozycja jest zróżnicowana w różnych społecznościach. Bardziej precyzyjnym opisem stosunków u bonobo jest stwierdzenie, że samice mają tam wysoki status, a nie niepodważalną dominującą pozycję, wyjaśnia Fruth.
      Tworzone przez samice sojusze to zapewne tylko jeden z mechanizmów za pomocą których podnoszą one swoją pozycję. Innym może być ukryta owulacja, która zmienia relacje między płciami. Gdy okres płodny nie jest dla samca od razu widoczny, przewagę zyskują ci, którzy pozostają w pobliżu samic, niż ci, którzy próbują przymusić je do rozmnażania. Ta i inne hipotezy będą przedmiotem przyszłych badań.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Jeszcze do niedawna Antarktyda była jedynym kontynentem, na którym nie znaleziono bursztynu. Właśnie się to zmieniło. Naukowcy z Alfred-Wegener-Institut (AWI) i TU Bergakademie Freiberg opublikowali na łamach Antarctic Science artykuł, w którym informują o odkryciu najbliższych biegunowi południowemu kawałków bursztynu. Dowodzi to, że około 90 milionów lat temu na Antarktydzie rosły drzewa, z których wyciekała żywica.
      Bursztyn znaleziono w rdzeniu pobranym podczas wyprawy badawczej na pokładzie lodołamacza Polarstern w 2017 roku. Rdzeń został pobrany w Zatoce Pine Island z osadów dennych znajdujących się na głębokości 946 metrów. Dokładne współrzędne geograficzne miejsca pochodzenia rdzenia to 73 stopnie 57 minut szerokości geograficznej południowej i 107 stopni 9 minut długości geograficznej zachodniej (73.57°S, 107.09°W).
      Żywica znajdowała się w 5-centymetrowej warstwie węgla brunatnego. Po wysuszeniu, węgiel został pokruszony na 1-milimetrowe kawałki i zbadany pod mikroskopem. Właśnie wtedy zauważono liczne fragmenty bursztynu o długości 0,5–1 mm. Miały one barwę od intensywnie żółtej po brązowawą.
      Analizowane fragmenty dają nam bezpośredni wgląd w warunki naturalne, jakie 90 milionów lat temu panowały w Zachodniej Antarktyce. To również fascynujące szczegółowe uzupełnienie wiedzy o funkcjonowaniu lasu, który opisaliśmy w Nature w 2020 roku, mówi geolog morski Johann P. Klages z AWI. Widzimy więc, że w pewnym momencie swojej historii każdy z siedmiu współczesnych kontynentów zapewniał warunki do życia drzewom wytwarzającym żywicę. Naszym celem jest dowiedzenie się jak najwięcej o tym lesie. Czy dochodziło tam do pożarów, czy w bursztynie znajdziemy ślady życia. Nasze odkrycie pozwala nam na bezpośrednią podróż w czasie, stwierdza uczony.
      Znalezienie bursztynu to kolejny kawałek układanki, dzięki któremu lepiej zrozumiemy bagnisty, pełen drzew iglastych las strefy umiarkowanej, jaki na biegunie południowym istniał we wczesnej kredzie, dodaje Henny Gerschel z TU Bergakademie Freiberg.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Największa bryła bursztynu na świecie stanie się własnością Muzeum Bursztynu-Muzeum Gdańska. Wkrótce mają się też rozpocząć starania o wpis do Księgi rekordów Guinnessa. Zakup jest możliwy dzięki dotacji Narodowego Instytutu Muzealnictwa i Ochrony Zabytków (NIMOZ).
      Wyjątkowy bursztyn
      Bryła waży nieco ponad 68 kg i pochodzi z Sumatry. Rzuca się w oczy tuż po wejściu do siedziby w Wielkim Młynie - można ją bowiem zobaczyć przy kasie.
      W Gdańsku okaz znajduje się od 3 lat (jest depozytem). Przyjechał z USA.
      Największą bryłę bursztynu na świecie zauważyliśmy podczas Targów Amberif i uznaliśmy, że warto, by pozostała w Gdańsku. Prezentowaliśmy ją nawet na jednej z naszych wystaw czasowych w poprzedniej lokalizacji Muzeum Bursztynu w Zespole Przedbramia, ale celowo nie nadawaliśmy sprawie większego rozgłosu. Od początku chodziło nam o jej kupno, a właściciele bryły, Janusz Fudala i Dough Lundberg, okazali nam niezwykłą życzliwość - ujawnił dyrektor Muzeum Gdańska Waldemar Ossowski.
      Dotychczasowa rekordzistka
      Warto przypomnieć, że dotychczasową rekordzistką jest ważąca 50,4 kg bryła należąca do Jospha Fama z Singapuru (ona także pochodzi z Sumatry). Tytuł największej przysługuje jej oficjalnie od 26 lipca 2016 r. Wymiary tego okazu są imponujące: 55x50x42 cm.
      Dotacja Narodowego Instytutu Muzealnictwa i Ochrony Zbiorów
      Wniosek o środki na zakup 68-kg bryły bursztynu rozpatrzono pozytywnie, tym samym zakup bryły został dofinansowany w ramach programu grantowego Narodowego Instytutu Muzealnictwa i Ochrony Zbiorów "Rozbudowa zbiorów muzealnych". Kwota dofinansowania wynosi 112.027,15 zł (podany koszt całkowity to 140.033,94 zł).
      Garść ciekawostek o bursztynie sumatrzańskim
      Bursztyn sumatrzański, młodszy kuzyn bursztynu bałtyckiego, wygląda jak skała lub meteoryt. Gdy pada na niego światło UV, opalizuje na niebiesko. Kierowniczka Muzeum Bursztynu, Renata Adamowicz, wyjaśnia, że z jakiegoś względu - prawdopodobnie z powodu niegdysiejszych warunków środowiskowych - zawiera bardzo mało inkluzji. Występuje w pokładach węgla brunatnego, skąd jest wydobywany jako surowiec dodatkowy. Powstał z żywic wytwarzanych przez kwiatowe rośliny okrytonasienne, które do dziś rosną w lasach równikowych Azji Południowo-Wschodniej - dodaje.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wiemy, że kobiety żyją dłużej od mężczyzn. Średnia długość życia przedstawicielek płci pięknej jest o 7,8% większa, niż w przypadku panów. Jak się okazuje, ta różnica jest jeszcze większa w przypadku dziko żyjących ssaków. Przeciętna samica dzikiego ssaka żyje aż o 18,6% dłużej niż samiec
      Największą różnice widać u kitanki lisiej, lwów, łosi, orek, kudu wielkiego i owiec, mówi profesor Fernando Colchero z Interdyscyplinarnego Centrum Dynamiki Populacji na Uniwersytecie Południowej Danii. Uczony wraz ze swoimi współpracownikami zebrali dane demograficzne dotyczące ponad 130 populacji dzikich ssaków i określili zarówno średnią długość życia, jak i ryzyko zgonu jako funkcję wieku dla obu płci.
      Nie tylko okazało się, że samice żyją dłużej, ale również, że w większości populacji różnica ta jest większa niż w przypadku człowieka.
      Dla około połowy zbadanych przez nas populacji ryzyko zgonu związane z wiekiem jest bardziej wyraźne u samic, niż u samców mówi Colchero. To zaś oznacza, że większa długość życia samic ma prawdopodobnie związek z innymi czynnikami, z którymi zwierzęta stykają się w ciągu dorosłego życia.
      Powszechnie uważa się, że samce angażują się w potencjalnie niebezpieczną rywalizację seksualną i prowadzą bardziej ryzykowny tryb życia, co wpływa na ogólną średnią wieku. Jednak Colchero nie zauważył, by intensywność selekcji seksualnej miała bezpośredni wpływ na ryzyko zgonu wśród obu płci. Badania sugerują raczej, że ważniejsze są tutaj złożone interakcje pomiędzy cechami fizjologicznymi obu płci i warunkami środowiskowymi, w jakich żyją.
      Obserwowaliśmy spore różnice. W przypadku niektórych gatunków to samce żyją najdłużej. Widzimy tam jasny trend statystyczny, który może być wyjaśniany na wiele różnych sposobów, dodaje profesor Dalia Conde z Wydziału Biologii.
      Jedną z przyczyn, dla której samce żyją krócej, może być np. konieczność włożenia przez nich więcej energii w wyhodowanie cech potrzebnych do rywalizacji o samice, takich jak duże rogi. To wymaga sporo energii, a jeśli dany gatunek żyje w trudnych warunkach środowiskowych, to połączenie obu elementów może negatywnie wpływać na szanse na przeżycie. Inne możliwe wyjaśnienie mówi, że przyczyną są androgeny. Samce wytwarzają je więcej niż samice. Androgeny wpływają na wydajność układu odpornościowego, gdy jest ich zbyt dużo wpływ ten jest negatywny, przez co samce mogą być bardziej podatne na infekcje i różne choroby.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W bursztynie z Dominikany sprzed 15-20 mln lat zachował się fragment lewej przedniej kończyny jaszczurki z rodzaju Anolis. Choć pod mikroskopem widać każdy szczegół rzadkiej skamieniałości, badacze z Uniwersytetu w Bonn podkreślają, że idealny, bliski oryginałowi stan to tylko pozory, gdyż kość w dużej mierze została chemicznie przekształcona. Ze względu na bardzo dużą wartość kręgowce w bursztynie nie były nigdy badane za pomocą metod analitycznych, co oznacza, że dotąd skład tkanki kostnej w bursztynie pozostawał nieznany.
      Wyniki badań, które ukazały się w piśmie PLoS ONE, zapewniają ważne wskazówki co do przebiegu fosylizacji.
      Bursztyn jest uznawany za doskonały środek konserwujący. Naukowcy z Uniwersytetu w Bonn zbadali niezwykłe znalezisko z Dominikany - drobną kończynę przednią jaszczurki z rodzaju Anolis, zamkniętą w bursztynie o wielkości zaledwie ok. 2 cm3. Warto dodać, że anolisy nadal współcześnie występują.
      Na co dzień okaz znajduje się w Staatliches Museum für Naturkunde Stuttgart. Opisywane studium stanowi część wspólnego projektu Uniwersytetu w Bonn i Niemieckiej Fundacji Badawczej, który ma przybliżyć przebieg procesu fosylizacji za pomocą metod eksperymentalnych i analitycznych.
      Inkluzje kręgowców w bursztynie są bardzo rzadkie. Większość stanowią skamieniałości owadów - opowiada doktorant Jonas Barthel.
      Pazury i palce jaszczurki są doskonale widoczne. Wygląda to tak, jakby kropla żywicy dopiero na nie opadła.
      Skany mikrotomograficzne wykonane w Instytucie Geonauk pokazały 2 złamania. Wygląd pierwszego wskazuje, że jaszczurka została prawdopodobnie zraniona przez drapieżnika. Do drugiego doszło już po zatopieniu w żywicy; występuje ono bowiem dokładnie w miejscu drobnego pęknięcia bursztynu.
      Analiza niewielkiego wycinka za pomocą spektroskopii Ramana ujawniła stan tkanki kostnej. W wyniku penetracji fluoru hydroksyapatyt (HAp) uległ transformacji do fluoroapatytu (FAp). To zaskakujące, gdyż zakładaliśmy, że otaczający bursztyn w dużej mierze chroni skamieniałość przed wpływami środowiskowymi. Możliwe jednak, że drobne pęknięcie sprzyjało przekształceniom chemicznym, bo przedostawały się przez nie roztwory bogate w minerały. Choć na tym etapie badań źródło F pozostaje raczej spekulatywne, wyniki analiz spektrometrii mas jonów wtórnych z analizatorem czasu przelotu (TOF-SIMS) sugerują, że były nim allochtony.
      Dodatkowo spektroskopia pokazała, że kolagen uległ degradacji. Utworzyła się też niezidentyfikowana faza węglanowa.
      Naukowcy tłumaczą, że zwykle bursztyn jest uznawany za dobry środek konserwujący. Dzięki żywicy mogliśmy poznać świat owadów sprzed milionów lat. W przypadku kości jaszczurki żywica mogła jednak przyspieszyć proces rozkładu - zawarte w niej kwasy prawdopodobnie zaatakowały apatyt, wywołując zjawisko przypominające próchnicę.
      Naukowcy wyjaśniają, że w archeologicznych próbkach holoceńskich kości to mikrobiologiczną proteolizę zidentyfikowano jako podstawowy proces degradacji i utraty kolagenu. Ten szlak jest jednak nieprawdopodobny w omawianym przypadku ze względu na zawartość w żywicy antyseptycznych związków (np. niespolimeryzowanych diterpenoidów). Ekipa przypomina, że podczas wcześniejszych badań dot. zachowania aminokwasów owadów z bursztynu w próbkach bursztynów z Dominikany, w odróżnieniu od innych złóż, nie udało się wykryć jakichkolwiek ich pozostałości. To wskazuje na środowisko degradujące białka. Odtwarzając przebieg zdarzeń, Niemcy dodają, że nie można jednak wykluczyć, że lotne związki z żywicy, takie jak mono- i seskwiterpenoidy, przereagowały z macierzą kolagenową już w momencie uwięzienia jaszczurki (np. w trakcie procesów wczesnej polimeryzacji i zestalania). Ponieważ niektóre mono- i seskwiterpenoidy hamują enzymy, mogło się to przyczynić do skądinąd świetnego zakonserwowania tkanek miękkich w bursztynie.
      Choć na tym etapie dokładny mechanizm "fluoryzacji" kości nie został jeszcze poznany, należy odnotować, że obecność macierzy żywicznej (tworzącej później kopal i bursztyn) niekoniecznie hamuje wymianę chemiczną między skamieniałością a środowiskiem bursztynu. Dlatego skamieniałe inkluzje kręgowców w bursztynie powinny być postrzegane jako rezultat złożonych procesów transportu i reakcji, w tym interakcji tkanki kostnej z 1) zewnętrznymi pierwiastkami i związkami, także roztworami wodnymi, 2) płynami ustrojowymi samej skamieniałości oraz 3) wysoce reaktywnymi związkami żywicy.
      Ponieważ to pierwsze szczegółowe badanie materiału kostnego z bursztynu, przyszłe analizy inkluzji kręgowców w bursztynach z innych złóż pokażą, który z powyższych procesów dominuje i czy jest nadal szansa na znalezienie nietkniętych makromolekuł w bursztynowych skamieniałościach.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...