Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Cząsteczka SynCAM 1 rozciąga się w poprzek synapsy. Stanowi coś w rodzaju kleju łączącego komórki i wpływa na uczenie. Ponieważ stan i budowa synaps mają wielki wpływ na szereg chorób i zaburzeń, naukowcy z Uniwersytetu Yale liczą na to, że dzięki ich odkryciu powstaną nowe metody terapii choćby alzheimeryzmu czy autyzmu.

Dywagowaliśmy, że cząsteczka [synCAM 1] może sprzyjać tworzeniu nowych synaps w rozwijającym się mózgu, ale byliśmy zaskoczeni, widząc, że wpływa również na podtrzymanie funkcji tych struktur. Teraz potrafimy zdefiniować, jak molekuła wspiera zdolność mózgu do tworzenia sieci połączeń – opowiada profesor Thomas Biederer.

Analizując działanie nerwowej cząsteczki adhezyjnej SynCAM 1, Amerykanie zauważyli, że gdy u myszy aktywowano gen SynCAM 1, powstawało więcej synaps, z kolei gryzonie w ogóle pozbawione tej cząsteczki wytwarzały mniej synaps.

Biederer i współpracownicy ustalili, że myszy z dużymi ilościami SynCAM 1 nie są w stanie się uczyć, podczas gdy osobniki z brakiem SynCAM 1 i mniejszą liczbą synaps radzą sobie lepiej od nich. Najwyraźniej nadmiar tej molekuły może działać uszkadzająco. Odkrycie stanowi poparcie dla ostatnich teorii, zgodnie z którymi dysponowanie zbyt dużą liczbą połączeń nie zawsze jest lepsze, a zrównoważona aktywność synaptyczna jest kluczowa dla właściwego uczenia i zapamiętywania.

Synapsy są dynamicznymi strukturami. Wydaje się, że SynCAM 1 spaja je; niektóre z tych cząsteczek są potrzebne do nawiązania kontaktu, ale zbyt duża ilość zapycha synapsę i hamuje jej działanie. Molekuła może działać trochę jak rzeźbiarz, pomagający nadać synapsom ich kształt. Biederer podkreśla, że nerwowa cząsteczka adhezyjna jest u myszy i ludzi prawie identyczna, co sugeruje, iż spełnia tę samą rolę w mózgach obu gatunków.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Depresja kliniczna charakteryzuje się m.in. zaburzeniami snu, uwagi czy lękiem. Dotąd poszukiwano obszarów odpowiedzialnych za poszczególne symptomy, jednak psycholodzy z Uniwersytetu Kalifornijskiego w Los Angeles stwierdzili, że skoro jest ich tak dużo, to może chodzi o nieprawidłowości w działaniu sieci połączeń w mózgu. I rzeczywiście - okazało się, że większość obszarów jest u chorych połączona silniej niż u przeciętnego człowieka.
      "Mózg musi być w stanie kontrolować działanie swoich połączeń: najpierw synchronizować, a potem desynchronizować różne rejony, aby reagować, regulować nastrój, uczyć się i rozwiązywać problemy" - tłumaczy dr Andrew Leuchter. Mózg osoby z depresją zachowuje zdolność tworzenia działających połączeń, ale traci umiejętność ich wyłączania.
      W studium wzięło udział 121 dorosłych ze zdiagnozowanym ciężkim zaburzeniem depresyjnym (MDD, od ang. major depressive disorder). Aby zbadać połączenia różnych części mózgu, mierzono synchronizację fal mózgowych. Choć już wcześniejsze eksperymenty wskazywały na nieprawidłowe połączenia w mózgach osób z depresją, naukowcy z Los Angeles posłużyli się nową metodą, zwaną ważoną analizą sieci. Dzięki temu mogli przyjrzeć się wszystkim połączeniom. Okazało się, że dla chorych typowa jest podwyższona synchronizacja w obrębie wszystkich częstotliwości aktywności elektrycznej. Wskazuje to na dysfunkcję wielu sieci mózgowych. Niektóre z nich regulują wydzielanie serotoniny i innych neuroprzekaźników wpływających na nastrój.
      Rejonem mózgu z najsilniej zaznaczoną obecnością nieprawidłowych połączeń była kora przedczołowa, silnie zaangażowana w regulację nastroju i rozwiązywanie problemów. Kiedy mózg traci plastyczność kontroli połączeń, może nie być w stanie dostosować się do zmiany.
      Leuchter zaznacza, że teraz trzeba odpowiedzieć na pytanie, do jakiego stopnia anormalne rytmy mózgowe napędzają nieprawidłową chemię mózgu? Wiedzieliśmy od jakiegoś czasu, że antydepresanty zmieniają rytmy mózgowe i że w tym samym czasie zmienia się stężenie różnych substancji, np. serotoniny. Niewykluczone zatem, że pierwszym skutkiem leczenia jest naprawienie połączeń i że normalizowanie [działania] ich sieci to kluczowy etap rekonwalescencji. Zagadnieniu temu poświęcimy kolejny etap badań.
    • przez KopalniaWiedzy.pl
      Pod nieobecność biglikanu - proteoglikanu występującego w śródmiąższu oraz na powierzchni komórek chrząstek, kości i skóry - synapsy płytki nerwowo-mięśniowej myszy zaczynają się rozpadać ok. 5 tyg. po narodzinach.
      Wprowadzenie biglikanu do hodowli komórkowej pomagało ustabilizować niedawno powstałe synapsy. Naukowcy z Brown University zaznaczają, że ich odkrycia będzie można wykorzystać w terapii stwardnienia zanikowego bocznego (ang. amyotrophic lateral sclerosis, ALS) czy rdzeniowego zaniku mięśni (ang. spinal muscular atrophy, SMA).
      Wcześniejsze badania pokazały, że biglikan zapobiega utracie funkcji mięśni w dystrofii mięśniowej Duchenne'a. Teraz okazuje się, że jest także kluczowym graczem w procesie podłączania nerwów do mięśni.
      To, co płytki motoryczne robią sekunda po sekundzie, jest istotne dla kontrolowania przez mózg ruchów, a także dla długoterminowego zdrowia zarówno mięśni, jak i neuronów ruchowych - opowiada Justin Fallon.
      W ramach poprzednich badań Fallon ustalił, że u myszy z tą samą mutacją co u pacjentów z dystrofią Duchenne'a biglikan wspiera aktywność utrofiny - białka znacznie ograniczającego degradację mięśni. Ponieważ ma ona podobną budowę do dystrofiny, której chorzy nie wytwarzają, przejmuje jej zadania.
      W ramach najnowszego studium Amerykanie odkryli, że biglikan wiąże się i pomaga aktywować enzym zwany MuSK. Działa on jak główny regulator innych białek, które tworzą i stabilizują płytkę nerwowo-mięśniową. U zmodyfikowanych genetycznie myszy, u których nie dochodziło do ekspresji biglikanu, płytki nerwowo-mięśniowa początkowo powstawały, ale 5 tygodni po porodzie z dużym prawdopodobieństwem rozpadały się. Eksperymenty pokazały, że u gryzoni "bezglikanowych" aż 80% synaps należało uznać za niestabilne. U zwierząt tych wykryto więcej anomalii, np. nieprawidłowo rozmieszczone receptory czy dodatkowe fałdy błony podsynaptycznej. Sądzimy, że te dodatkowe fałdy są pozostałościami wcześniejszych miejsc synaptycznych.
      Fallon i inni wyliczyli, że u myszy pozbawionych biglikanu poziom MuSK w synapsach płytki ruchowej był 10-krotnie niższy niż w grupie kontrolnej.
    • przez KopalniaWiedzy.pl
      Naukowcy ze Szkoły Medycznej Vanderbilt University odkryli, że plastry nikotynowe mogą poprawiać pamięć starszych osób z łagodnymi zaburzeniami poznawczymi (ang. mild cognitive impairment, MCI). Raport na ten temat ukazał się w piśmie Neurology.
      Amerykanie przeprowadzili półroczne badania na 67-osobowej próbie. Komentatorzy ich odkryć podkreślają, że choć perspektywa wyleczenia MCI, nim przekształcą się w pełnoobjawową demencję, jest kusząca, wyniki nie są ostateczne i w żadnym razie nie powinno się zachęcać ludzi do palenia. Teraz należy przeprowadzić dłuższe studium z większą liczbą uczestników.
      Specjaliści już od jakiegoś czasu wiedzą, że w przebiegu choroby Alzheimera dochodzi do utraty receptorów nikotynowych w mózgu. Poza tym nikotyna stymuluje zaangażowane w uczenie i pamięć neurony cholinergiczne (nie bez kozery leki stosowane w terapii demencji blokują enzym acetylocholinesterazę, nie dopuszczając do rozłożenia stymulującej receptory nikotynowe acetylocholiny). Zespół doktora Paula Newhousa już wcześniej wykazał, że dożylne podanie nikotyny poprawia pamięć u pacjentów z alzheimerem, wnioskowaliśmy zatem, że jeśli działa na początkowym stadium choroby Alzheimera, powinna zadziałać nawet w większym stopniu u osób z łagodnymi zaburzeniami poznawczymi.
      Co ważne, żadna z uwzględnionych w studium osób nie paliła. U połowy zastosowano plastry nikotynowe, które dziennie dostarczały 15 mg alkaloidu. Reszcie naklejono plastry placebo. Ani pacjenci, ani eksperymentatorzy nie wiedzieli, kto trafił do jakiej grupy.
      Po 6 miesiącach terapii podczas testów okazało się, że grupa z plastrami odzyskała 46% normalnego dla swojej grupy wiekowej poziomu funkcjonowania w zakresie pamięci długotrwałej, podczas gdy grupa kontrolna pogorszyła się w tym samym czasie aż o 26%. Niestety, wyniki nie są istotne statystycznie. Nie wiemy, czy korzyści utrzymują się przez dłuższy czas i czy oznaczają znaczącą poprawę.
    • przez KopalniaWiedzy.pl
      Komórki gleju pełnią wiele różnych funkcji, m.in. stanowią zrąb dla neuronów mózgu, chronią je, odżywiają czy współtworzą barierę krew-mózg. Teraz okazało się, że nie są zwykłym klejem (ich nazwa pochodzi od gr. glia - klej), ale w znacznym stopniu odpowiadają za plastyczność mózgu. Wpływają na działanie synaps i w ten sposób pomagają segregować informacje potrzebne do uczenia.
      Komórki gleju są jak nadzorcy. Regulując synapsy, kontrolują przepływ danych między neuronami i oddziałują na przetwarzanie informacji oraz proces uczenia - tłumaczy Maurizio De Pittà, doktorant z Uniwersytetu w Tel Awiwie. Opiekunem naukowym De Pitty był prof. Eshel Ben-Jacob. Współpracując z kolegami z USA i Francji, student stworzył pierwszy na świecie model komputerowy, uwzględniający wpływ gleju na synaptyczny transfer danych.
      De Pittà i inni domyślali się, że glej może odgrywać ważną rolę w pamięci i uczeniu, ponieważ tworzące go komórki występują licznie zarówno w hipokampie, jak i korze mózgowej. Na każdy neuron przypada tam od 2 do 5 komórek gleju. Aby potwierdzić swoje przypuszczenia, naukowcy zbudowali model, który uwzględniał wyniki wcześniejszych badań eksperymentalnych.
      Wiadomości przesyłane w sieciach mózgu powstają w neuronach, ale glej działa jak moderator decydujący, które informacje zostaną przesłane i kiedy. Może albo wywołać przepływ informacji, albo zwolnić aktywność synaps, gdy staną się nadmiernie pobudzone. Jak nadmienia prof. Ben-Jacob, wygląda na to, że glej jest dyrygentem, który dąży do optymalnego działania mózgu.
      Wbrew pozorom, przydatność modelu De Pitty nie ogranicza się wyłącznie do lepszego zdefiniowania funkcji gleju, ponieważ może zostać wykorzystany np. w mikrochipach, które naśladują sieci występujące w mózgu czy podczas badań nad padaczką i chorobą Alzheimera. W przypadku epilepsji glej wydaje się nie spełniać funkcji modulujących, a w przebiegu demencji nie pobudza przekazywania danych.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...