Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Pochodne zęba zastąpią włókna węglowe

Recommended Posts

Szkliwo z zębów ryb dwudysznych i belony pospolitej (Belone belone) może ułatwić wyprodukowanie lżejszych i bardziej wydajnych paliwowo samochodów czy samolotów – twierdzi prof. John Barry, fizyk z Queensland University of Technology.

Napędem dla mojej pracy jest potrzeba znalezienia nowych lepszych materiałów, ponieważ większości udoskonaleń z dziedziny materiałoznawstwa z ostatnich 60 lat nie uda się kontynuować bez wprowadzania ciągłych innowacji. Ograniczeniem są właściwości wykorzystywanych obecnie materiałów. Z powodu ciągłej potrzeby zwiększania osiągów docieramy do granic możliwości materiałów, a skutki tego zjawiska bywają katastrofalne – w tym miejscu warto przypomnieć choćby ostatnie awarie silników Airbusów 380.

Barry ma na to radę – badanie przyrody i wykorzystywanie naturalnych rozwiązań. Zęby różnych zwierząt były przystosowywane lub konstruowane do różnych celów. Jak materiały inżynieryjne są tworami kompozytowymi o właściwościach o wiele lepszych od wielu istniejących syntetyków. Zaczęliśmy od dwudysznych, ponieważ są zwierzętami prehistorycznymi [wyewoluowały we wczesnym dewonie]. Z tego powodu sądziliśmy, że budowa ich zębów będzie sporo prostsza niż u współczesnych zwierząt, które podlegały wielu ewolucyjnym zmianom. Byliśmy zaskoczeni, gdy natrafiliśmy na skomplikowaną mikrostrukturę zęba. Badaliśmy także belony, które mają wyjątkowe odporne na zniszczenia zęby.

Australijczycy tłumaczą, że w 95% ząb składa się z hydroksyapatytu, minerału zbudowanego z hydroksyfosforanu wapnia, który sam w sobie jest bardzo słaby, ale w organizmie żywym staje się twardy i wytrzymały. Zespół z QUT bada strukturę zęba na 3 poziomach. Najpierw akademicy przyglądają się kryształom zębiny (dentyny), które mogą mieć różne kształty, sposobom ich ułożenia w poszczególnych pęczkach pryzmatycznych szkliwa oraz temu, jak zorganizowana jest powierzchnia zęba, by ciąć, miażdżyć lub rozcierać pokarm.

Badacz z antypodów podkreśla, że w przeszłości naukowcy próbowali już wykorzystywać materiały naśladujące przyrodę. W czasie II wojny światowej inżynierowie pracujący nad imitowaniem właściwości drewna stworzyli włókno szklane, zaś zamek błyskawiczny to technologiczna kopia przywierających do ubrania rzepów.

Barry opowiada, że skopiowanie niektórych struktur zęba pozwoli na wyeliminowanie kompozytów włókien węglowych. Obecnie są one najlepszym z dostępnych rozwiązań, ale, niestety, pozostają bardzo mocne wzdłuż warstwy nanoszenia ziaren, a w poprzek są bardzo słabe, co ogranicza ich zastosowanie.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy z Korea Advanced Institute of Science and Technology (KAIST) postanowili sprawdzić, w jaki sposób kwaśne i słodkie napoje wpływają na szkliwo zębów w skali nano. By ocenić zmiany mechaniczne i morfologiczne zachodzące w czasie indukowanej napojami erozji szkliwa, zespół posłużył się mikroskopem sił atomowych (AFM).
      Nieleczona, utrata szkliwa może prowadzić do różnych problemów, w tym przebarwień, pęknięć czy nadwrażliwości. Raz uszkodzone szkliwo nigdy się już nie odbuduje, dlatego badania wyjaśniające, jak erozja szkliwa się rozpoczyna i rozwija, zwłaszcza w najwcześniejszych etapach, mają spore znaczenie dla utrzymania zdrowia zębów.
      Doktorzy Panpan Li i Chungik Oh wybrali do badań 3 popularne napoje: Coca-colę, Sprite'a i sok pomarańczowy. Za pomocą AFM badano topografię powierzchni i sporządzano mapę modułu sprężystości.
      Od ochotników w wieku 20-35 lat, którzy odwiedzili KAIST Clinic, pozyskano 5 zdrowych zębów trzonowych. Po wyrwaniu trzymano je w wodzie destylowanej. Napoje kupiono i otwarto tuż przed eksperymentem z zanurzaniem.
      Naukowcy zaobserwowali, że wraz z czasem zaburzenia chropowatość powierzchni szkliwa znacząco rosła, a moduł sprężystości drastycznie spadał. Zademonstrowano, na przykład, że po 5 min przebywania w cieczy moduł sprężystości był 5-krotnie niższy.
      Dodatkowo Koreańczycy zaobserwowali preferencyjne wytrawianie uszkodzonego szkliwa. Zbyt mocne szczotkowanie zębów i pasty z cząsteczkami polerującymi, które są reklamowane jako sposób na usunięcie biofilmu, mogą zaś powodować zadrapania szkliwa.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Gdy piorun uderzy w samolot, pilot powinien jak najszybciej wylądować, by można było sprawdzić ewentualne uszkodzenia maszyny. Na pierwszym planie jest tutaj stawiane bezpieczeństwo, jednak bardzo często maszyna wychodzi z takiego zdarzenia bez szwanku, a cała procedura powoduje spore koszty i opóźnienia.
      Najnowsze badania sugerują, że najlepszym sposobem na zmniejszenie ryzyka uderzenia pioruna w samolot może być... dodanie ładunku elektrycznego na jego powierzchni.
      Podczas lotu na powierzchni samolotu gromadzą się dodanio lub ujemnie naładowane jony. Szczególnie dużo gromadzi się ich na dziobie, końcówkach skrzydeł i statecznika. Jeśli pojawi się duża różnica w ładunkach zanim samolot wleci w naładowany obszar atmosfery, jony mogą przepłynąć wzdłuż poczycia i zamknąć obwód z chmurami prowadząc do pojawienia się wyładowania.
      W 2018 roku inżynier Carmen Guerra-Garcia z MIT i jej sudent Colin Pavan, przeprowadzili obliczenia, z których wynikało, że aby zapobiec takim wydarzeniom należy dodać do poszycia samolotu ujemne ładunki elektryczne. Teraz oboje przetestowali model samolotu z umieszczonym na pokładzie generatorem. Badali swój model w różnych warunkach, sprawdzając, jak rozkładają się ładunki elektryczne i co się z nimi dzieje.
      Badania potwierdziły, że przepływ jonów prowadzi do zainicjowania wyładowań elektrycznych. Potwierdziły też, że dodanie ujemnych ładunków pomaga w uniknięciu takich zjawisk.
      Naładowanie samolotu brzmi jak pomysł szaleńca, ale dodanie ładunków ujemnych zapobiega gromadzeniu się ładunków dodatnich, co z kolei może zapobiec pojawieniu się wyładowania, mówi inżynier Pavlo Kochkin z Uniwersytetu w Bergen. Od lat zajmuje się on problematyką wyładowań elektrycznych na powierzchni samolotów. Teraz, zainspirowany badaniami naukowców z MIT, tworzy specjalny symulator, w którym uwzględni różne poziomy naelektryzowania powietrza i zawartość pary wodnej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      BAE Systems wyprodukowało bezzałogowy ultralekki samolot (UAV), który może konkurować z satelitami czy dronami. PHASA-35 (Persistent High-Altitude Solar Aircraft) może pochwalić się skrzydłami o rozpiętości 35 metrów, a więc dorównującej rozpiętości skrzydeł Boeinga, ale waży przy tym 150 kg, w tym 15 kg stanowi ładunek. Samolot został po raz pierwszy oblatany 10 lutego na poligonie australijskich sił powietrznych Woomera.
      Latał przez nieco mniej niż godzinę. To jednak wystarczyło do przetestowania jego aerodynamiki, autopilota i manewrowości. Wcześniej testowaliśmy te elementy na mniejszych modelach samolotu, więc większość problemów już poprawiliśmy,mówi Phil Varty z BAE Systems.
      Prototyp pokryty jest ogniwami fotowoltaicznymi firmy MicroLink Devices. Ich producent twierdzi, że skuteczność konwersji paneli sięga 31%.
      Na potrzeby testu tylko część skrzydeł pokryliśmy panelami. Urządzenia te o grubości kartki papieru generowały 4 kW. W ostatecznej wersji samolotu panele umieścimy na całej powierzchni skrzydeł i dostarczą one 12 kW, zapewnia Varty.
      Energia słoneczna napędza dwa silniki elektryczne i zasila zestaw ponad 400 akumulatorów, które pozwalają samolotowi na lot w nocy. Jak mówi Varty, akumulatory – w przeciwieństwie do paneli słonecznych – nie są ostatnim krzykiem techniki. Firma postawiła na znane, niezbyt wydajne i tanie rozwiązanie, podobne do tego, jakie możemy spotkać w smartfonach. Chodzi o to, żeby łatwo można było wymienić akumulatory na nowe, gdy pojawi się lepsza sprawdzona wersja.
      Przedstawiciele BAE Systems zauważają też, że pomimo tego, iż test samolotu był prowadzony latem w Australii, to pojazd zaprojektowano tak, by mógł latać podczas najmniej sprzyjającej pory roku – przesilenia zimowego. Dlatego też PHASA-35 może potencjalnie pozostawać w powietrzu nieprzerwanie przez cały rok. Będzie latał w stratosferze na wysokości około 20 kilometrów. Tam jest niewiele wiatru, nie chmur i turbulencji, mówi Varty.
      Samolot może być sterowany z Ziemi. Jest też wyposażony w autopilota, któremu można wgrać wcześniej przygotowaną trasę. Urządzenie może pozostawać w określonym punkcie lub wykonywać złożone manewry. Można go wyposażyć w aparaty fotograficzne, czujniki i różnego rodzaju urządzenia śledzące. Dlatego też PHASA-35 w wielu zastosowaniach może zastąpić drony czy satelity.
      Najlepsze wojskowe drony mogą pozostawać w powietrzu maksymalnie przez 3 doby. Z kolei satelity muszą utrzymać prędkość co najmniej 7 km/s, by pozostać na wyznaczonej orbicie. Samolot BAE Systems będzie mógł bez przerwy monitorować określone miejsce, a dzięki temu, że znajduje się niżej nad Ziemią, dostarczy dokładniejszych obrazów. Jednak jego przydatność i czas pozostawania w powietrzu będą w dużej mierze zależały od masy ładunku. Osobną kwestią jest odporność na awarie przez cały rok.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Parkując samochód na zewnątrz, zwłaszcza w okolicy, gdzie występują wiewiórki, warto od czasu do czasu zapobiegawczo zajrzeć pod maskę. Przekonała się o tym Holly Persic z Pensylwanii, która wybrawszy się autem do biblioteki, poczuła swąd spalenizny i miała wrażenie, że SUV wydaje dziwne dźwięki. Kobieta zadzwoniła do męża, który poradził jej, by zajrzała pod maskę. Okazało się, że w środku znajduje się cała masa orzechów czarnych i trawy - jednym słowem, wiewiórcze zapasy na zimę.
      Wyjęcie ponad 200 orzechów zajęło prawie godzinę. Później małżonkowie pojechali do warsztatu. Tam po rozmontowaniu podwozia udało się wyjąć resztę orzechów (dobre pół wiaderka). Te, które leżały na bloku cylindrów, były czarne i miały charakterystyczną woń spalenizny - opowiada Chris Persic. Na szczęście nie doszło do jakichś poważniejszych uszkodzeń.
      Skarb spod maski wyjaśnił, co się stało z orzechami, które spadły z dużego drzewa. Na ziemi nie pozostało ich za dużo, a Chris zachodził ostatnio w głowę, gdzie się podziały...

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wszystkie samoloty, od początku istnienia tych maszyn, poruszają się dzięki pomocy ruchomych części, takich jak śmigła czy turbiny. Inżynierowie z MIT skonstruowali pierwszy w historii samolot, który nie zawiera żadnych ruchomych części. Jest on zasilany przez „wiatr jonowy” wytwarzany na pokładzie samolotu, który zapewnia mu wystarczający ciąg, by utrzymać maszynę w powietrzu. W przeciwieństwie do innych rozwiązań stosowanych w lotnictwie, nowy napęd jest całkowicie cichy i nie potrzebuje paliw kopalnych.
      To pierwszy zdolny do lotu samolot z napędem niezawierającym ruchomych części. Potencjalnie może to doprowadzić do powstania samolotów, które są cichsze, prostsze w konstrukcji i nie powodują emisji pochodzącej ze spalania, cieszy się profesor Steven Barrett z MIT. Uczony uważa, że w najbliższej przyszłości mogą pojawić się ciche drony korzystające z wiatru jonowego. W dalszej zaś perspektywie uczony przewiduje pojawienie się samolotów pasażerskich i transportowych o napędzie hybrydowym, łączącym wiatr jonowy z tradycyjnym silnikiem.
      Barrett przyznaje, że do pracy nad nowatorskim napędem zainspirował go serial Star Trek, który namiętnie oglądał w dzieciństwie. Szczególnie fascynowały go pojazdy latające, które bez wysiłku poruszały się w atmosferze, nie były wyposażone w żadne śmigła, nie wydzielały spalin i nie hałasowały. Pomyślałem, że w przyszłości powstaną samoloty, które nie będą miały śmigiel i turbin. Będą jak statki w Star Treku, które świecą na niebiesko i cicho się poruszają, wspomina Barrett.
      Przed dziewięciu laty naukowiec rozpoczął prace nad systemem napędowym bez ruchomych części. Szybko zwrócił uwagę na wiatr jonowy, czyli ciąg elektroaerodynamiczny. Jego koncepcję opracowano w latach 20. ubiegłego wieku. Mówi ona, że jeśli pomiędzy dwiema elektrodami, cienką i grubą, pojawi się wystarczające napięcie, to powietrze przepływające pomiędzy elektrodami wytworzy tyle ciągu, że będzie w stanie napędzać mały samolot. Przez lata koncepcją taką zajmowali się głównie hobbyści, którym udawało się stworzyć bardzo małe samoloty, podłączone do źródła napięcia, które przez chwilę unosiły się w powietrzu. Uzyskanie dłuższego lotu większym urządzeniem uznawano za niemożliwe.
      Jednak Barrettowi się udało. Skonstruowany przez niego i jego zespół samolot waży około 2,5 kilogramów i ma skrzydła o rozpiętości 5 metrów. Pod skrzydłem, wzdłuż jego przedniej krawędzi, znajdują się cienkie struny, przypominające ułożeniem płot otaczający pastwisko. Wzdłuż tylnej krawędzi również mamy struny, ale grubsze. Te pierwsze działają jak katoda (elektroda dodatnia), a drugie jak anoda. W kadłubie pojazdu umieszczono akumulatory litowo-jonowe, które dostarczają one napięcie rzędu 40 000 woltów do katody. Naelektryzowane struny z przodu wyrywają elektrony z otaczających je molekuł powietrza, a zjonizowane w ten sposób powietrze przepływa w kierunku strun z tyłu. Każdy z przepływających jonów miliony razy zderzał się z molekułami powietrza, tworząc w ten sposób ciąg.
      Twórcy samolotu testowali go w sali o długości 60 metrów. Pojazd przemierzał całą długość sali. Przeprowadzono 10 testów i za każdym razem stwierdzono, że napęd działa. To był najprostszy możliwy projekt. Daleka jeszcze droga do stworzenia samolotu, zdolnego do wykonania użytecznej misji. Musi być on bardziej wydajny, lecieć dłużej i być zdolnym do lotu na otwartej przestrzeni, dodaje Barrett.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...