Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Badania przeprowadzone na Tufts University prowadzą do zaskakującego wniosku - niektóre z najbardziej masywnych galaktyk są o miliardy lat starsze niż dotychczas przypuszczano.

Znaleźliśmy dość dużą liczbę bardzo masywnych, bardzo jasnych galaktyk, które istniały już 12 miliardów lat temu, gdy wszechświat był bardzo młody. Odkrycia te stoją w sprzeczności z najnowszymi modelami dotyczącymi formowania się i ewolucji galaktyk - stwierdził astrofizyk Danilo Marchesini.

Odkrycia dokonał on wraz z badaczami z Yale University, Carnegie Observatories, Princeton University i innymi.

Uczeni zidentyfikowali galaktyki, które były od 5 do 10 razy bardziej masywne niż Droga Mleczna. Ich przesunięcie ku czerwieni wynosi 3≤z<4, a zatem istniały wówczas, gdy wszechświat liczył sobie od 1,5 do 2 miliardów lat.

Obserwując wspomniane galaktyki dokonano jeszcze jednego zaskakującego odkrycia. Ponad 80% z nich wykazuje bardzo dużą jasność w podczerwieni, co jest oznaką ich olbrzymiej aktywności i intensywnego wzrostu. Tymczasem masywne galaktyki w naszym niedalekim sąsiedztwie są bardzo spokojne i nie dochodzi w nich do formowania się gwiazd.

Być może jednak uda się dopasować istnienie wspomnianych galaktyk do obowiązujących modeli. Ich przesunięcie ku czerwieni zostało bowiem ocenione za pomocą modelowania SED (spectral energy distribution) i jeszcze nie potwierdzono go badaniami spektroskopowymi. Metoda SED jest mniej dokładna niż badania spektroskopem. Jeśli zatem spektroskop wykaże, że połowa z tych masywnych galaktyk znajduje się nieco bliżej, z przesunięciem do czerwieni z=2,6, będzie to oznaczało, że powstały one gdy wszechświat liczył sobie 2,5 miliarda lat, a w przestrzeni kosmicznej było bardzo dużo pyłu absorbującego światło, to niezgodność z obecnymi modelami będzie znacząco mniejsza. Wciąż jednak odkrycie masywnych galaktyk o z=2,6 będzie bardzo znaczące.

Tak czy inaczej jasne stało się, że nasze pojmowanie tego, w jaki sposób tworzą się masywne galaktyki, jest dalekie od satysfakcjonującego - mówi Marchesini.

Share this post


Link to post
Share on other sites

"Odkrycia te stoją w sprzeczności z najnowszymi modelami dotyczącymi formowania się i ewolucji galaktyk - stwierdził astrofizyk Danilo Marchesini."

Jedno odkrycie i tyyyyle pracy naukowej szlak trafił  >:)

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Nie wszystkie gwiazdy Drogi Mlecznej są z nią związane siłami, które gwarantują ich pozostanie w galaktyce. Naukowcy znają już kilkadziesiąt gwiazd hiperprędkościowych, czyli takich, które poruszają się z na tyle dużą prędkością, iż w końcu wylecą poza Drogę Mleczną.
      Jeszcze do niedawna jedynymi znanymi gwiazdami hiperprędkościowymi były błękitne olbrzymy, które wywodziły się z centrum galaktyki. Tam zostały przyspieszone przez czarną dziurę. Przed pięciu laty informowaliśmy o odkryciu nowej kategorii gwiazd hiperprędkościowych. To obiekty mniej więcej wielkości Słońca, które prawdopodobnie nie pochodzą z centrum galaktyki, zatem mechanizm ich przyspieszenia musiał być inny niż obecność czarnej dziury.
      LAMOST-HVS to najbliższa Słońcu gwiazda hiperprędkościowa. Naukowcom z University of Michigan udało się, dzięki użyciu Teleskopu Magellana i satelity Gaia, prześledzić trasę, jaką przez ostatnie 33 miliony lat przebyła ta gwiazda. Obecnie porusza się ona z prędkością 568 km/s (2 044 800 km/h).
      Jedna z teorii mówiąca o powstawaniu gwiazd hiperprędkościowych zakłada, że to pozostałości układu podwójnego, który znalazł się zbyt blisko czarnej dziury. Ta wchłonęła jedną z gwiazd, a drugą przyspieszyła do prędkości pozwalającej na wyrwanie się z objęć grawitacyjnych galaktyki.
      Jednak gdy prześledzono trasę LAMOST-HVS okazało się, że w ciągu ostatnich 33 milionów lat nie zbliżyła się ona nawet do czarnej dziury. Musiało przyspieszyć ją coś innego.
      Do wyrzucenia gwiazdy z galaktyki potrzebne jest niezwykle silne oddziaływanie grawitacyjne. Autorzy najnowszych badań uważają, że może ono zostać wytworzone przez gromadę gwiazd, w której znajduje się co najmniej kilkanaście gwiazd o masie co najmniej 30 mas Słońca. Jeśli LAMOST-HVS znalazła się blisko takiej gromady, mogła zostać przyspieszona do hiperprędkości. Alternatywnym rozwiązaniem byłoby spotkanie z czarną dziurę o masie około 100 mas Słońca.
      Czarne dziury o tak niewielkiej masie są od dawna przedmiotem spekulacji i poszukiwań. Dotychczas przeprowadzono kilka obserwacji, które mogłyby potwierdzać ich istnienie, jednak wciąż brak jednoznacznych dowodów. Jednak uważa się, że takie czarne dziury mogą powstawać w masywnych gromadach gwiazd, takich, jaka mogła przyspieszyć LAMOST-HVS.
      Naukowcy, którzy prześledzili historię LAMOST-HVS stwierdzili, że tam, gdzie gwiazda znajdowała się przed 33 milionami lat nie widać żadnej masywnej gromady gwiazd. Jednak taka gromada z łatwością mogłaby zostać przesłonięta przez pył, więc fakt, że niczego tam nie widzimy, nie oznacza, że niczego tam nie ma. Badania wykazały, że gwiazda pochodzi z Ramienia Węgielnicy, które trudno jest obserwować z Ziemi. Jeśli udałoby się zaobserwować tam gromadę gwiazd, być może zdobylibyśmy dowody na istnienie niewielkich czarnych dziur.
      Tak czy inaczej, pewne jest, że LAMOST-HVS została przyspieszona przez coś innego niż Saggitarius A* w centrum galaktyki.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zdaniem międzynarodowego zespołu naukowego, wszechświat jest pełen planet zawierających wodę. Uczeni uważają, że jest ona ważnym składnikiem egzoplanet o rozmiarach od 2 do 4 wielkości Ziemi.
      To była dla nas wielka niespodzianka, gdy zdaliśmy sobie sprawę, że musi być tak dużo wodnych światów, mówi główny autor badań, doktor Li Zen z Uniwersytetu Harvarda. Z badań, przeprowadzonych za pomocą teleskopów Keplera i Gaia wynika bowiem, że wiele ze znanych nam egzoplanet zawiera do 50% wody. Dla porównania, na Ziemi woda stanowi zaledwie 0,02% masy planety.
      Wiele z potwierdzonych dotychczas około 4000 egzoplanet można zaliczyć do jednej z dwóch kategorii: takich, których średnica wynosi około 1,5 średnicy Ziemi oraz takich o średnicy około 2,5 średnicy naszej planety. Po przeanalizowaniu średnic i mas badanych egzoplanet uczeni stworzyli model ich budowy.
      Sprawdziliśmy, jak masa ma się do średnicy i stworzyliśmy model wyjaśniający tę zależność, mówi Li Zeng. Wynika z niego, ze planety o średnicy do 1,5 średnicy Ziemi to zwykle światy skaliste o masie 5-krotnie większej niż masa naszej planety. Z kolei te o średnicy 2,5-krotnie większej od średnicy Ziemi mają masę 10-krotnie większą od naszej planety i są światami wodnymi.
      Tam występuje woda, ale nie jest ona tak powszechnie dostępna jak na Ziemi. Temperatury powierzchni tych planet wynoszą 200–500 stopni Celsjusza, są otoczone atmosferą zdominowaną przez parę wodną z płynną warstwą poniżej. W głębi planety woda ta, pod wpływem wysokiego ciśnienia, została prawdopodobnie zmieniona w lód. Jeszcze niżej jest skaliste jądro planety. Piękno naszego modelu polega na tym, że wyjaśnia nam, jak skład planety ma się do znanych nam danych na jej temat, mówi Li Zeng.
      Nasze dane wskazują, że około 35% egzoplanet większych od Ziemi powinno być bogate w wodę. Te wodne światy formowały się w podobny sposób, jak jądra dużych planet Układu Słonecznego. Niedawno rozpoczęta misja TESS pozwoli na znalezienie większej ich liczby, a w przyszłości teleskop Jamesa Webba pozwoli na zbadanie ich atmosfery. To ekscytujący okres dla badaczy egzoplanet, stwierdza uczony.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Włosko-amerykańskiemu zespołowi naukowemu udało się odnaleźć ostatni we wszechświecie rezerwuar zaginionej materii. Tej materii, która jest widoczna i jest złożona z barionów. Dotychczas astrofizycy potrafili zlokalizować około 2/3 materii stworzonej podczas Wielkiego Wybuchu.
      Teraz międzynarodowy zespół naukowy stwierdził, że reszta znajduje się pomiędzy galaktykami, w postaci gazu o temperaturze około miliona stopni Celsjusza. Odkrycie jest bardzo ważne dla astrofizyki. Jednym z kluczowych elementów pozwalających na przetestowanie teorii Wielkiego Wybuchu jest dokonanie dokładnego spisu barionów helu, wodoru i wszystkich innych pierwiastków, wyjaśnia współautor badań Michael Shull.
      Obecnie wiemy, że około 10% materii tworzy galaktyki, a około 60% znajduje się w chmurach gazu pomiędzy nimi. W 2012 roku Shull i jego zespół postawili hipotezę, że brakujące 30% barionów ulokowało się w ciepłym ośrodku międzygalaktycznym (WHIM, Warm-Hot Intergalactic Medium). W celu potwierdzenia hipotezy naukowcy zaczęli satelitarne obserwacje kwazara 1ES 1553. To bardzo jasno świecąca czarna dziura. Obserwując tego typu struktury, można określić, jak promieniowania rozchodzi się w kosmosie.
      Dzięki teleskopom Hubble'a i XMM-Newton odkryto sygnatury wysoce zjonizowanego tlenu leżącego pomiędzy kwazarem an Układem Słonecznym. Jego gęstość jest wystarczająca, by – po ekstrapolacji na cały wszechświat – można było powiedzieć o odnalezieniu brakujących 30% materii.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy pracujący w CERN-ie przy eksperymencie ALPHA dokonali kolejnego istotnego kroku na drodze ku zrozumieniu antymaterii i budowy wszechświata. Eksperymentalnie wykazali, że są w stanie zbadać strukturę wewnętrzną atomu antywodoru. Wiemy, że jest możliwe zaprojektowanie eksperymentu, który pozwoli nam na wykonanie szczegółowych pomiarów antyatomów - mówi Jeffrey Hangst, rzecznik prasowy eksperymentu ALPHA.
      Nasz wszechświat wydaje się niemal w całości zbudowany z materii. Antymateria gdzieś zniknęła. Tymczasem podczas Wielkiego Wybuchu powinno być jej tyle samo co materii. Zetknięcie materii i antymaterii prowadzi do ich anihilacji. Przewaga materii we wszechświecie sugeruje, że natura preferuje ją nad antymaterię. Jeśli uda się szczegółowo zbadać atomy antymaterii będziemy bliżsi odpowiedzi na pytanie o tę preferencję.
      W czerwcu ubiegłego roku informowaliśmy, że ekspertom z CERN-u udało się uwięzić i przechować atomy antywodoru przez 1000 sekund. Wówczas Joel Fajans, jeden z naukowców pracujących przy ALPHA mówił, że tysiąc sekund to aż nadto czasu, by wykonać pomiary schwytanego antyatomu. To wystarczająco długo, by np. zbadać jego interakcję z promieniem lasera czy mikrofalami.
      W skład atomu wodoru wchodzi elektron. Oświetlając atom laserem można doprowadzić do pobudzenia elektronu, który przeskoczy na wyższą orbitę, a następnie powróci na oryginalną orbitę, emitując przy tym światło. Możliwe jest bardzo precyzyjne zmierzenie spektrum tego światła, które w świecie materii jest unikatowe dla wodoru. Teoretycznie niemal identyczne spektrum powinniśmy uzyskać z pobudzenia atomu antywodoru. I właśnie dokonanie takiego pomiaru jest ostatecznym celem eksperymentu ALPHA.
      Wodór to najbardziej rozpowszechniony pierwiastek we wszechświecie. Jego strukturę rozumiemy bardzo dobrze. Teraz możemy zacząć odkrywać prawdę o antywodorze. Czy są one różne? Czas pokaże - mówi Hangst.
      Naukowcy dokonali właśnie pierwszych pomiarów antywodoru. Atomy najpierw zostały złapane w magnetyczną pułapkę. Następnie oświetlono je mikrofalami o precyzyjnie dobranej częstotliwości. To spowodowało zmianę orientacji magnetycznej antyatomów i uwolnienie się ich z pułapki. Wówczas antyatomy napotkały na atomy i doszło do ich anihilacji, co pozwoliło czujnikom na zarejestrowanie charakterystycznego wzorca tego zdarzenia. To z kolei dowiodło, że możliwe jest przeprowadzenie eksperymentu, w którym właściwości wewnętrzne atomu antywodoru zostaną zbadane za pomocą mikrofal.
    • By KopalniaWiedzy.pl
      Teleskopy Spitzera i Hubble’a odkryły, że jedna z najdalszych znanych nam galaktyk tworzy gwiazdy w niezwykle szybkim tempie. GN-108036 to jednocześnie najjaśniejsza z tak odległych galaktyk.
      Znajduje się ona w odległości 12,9 miliarda lat świetlnych od Ziemi i każdego roku powstaje w niej... 100 nowych gwiazd. Dla porównania, Droga Mleczna jest pięciokrotnie większa i 100-krotnie bardziej masywna, a produkuje około 3 gwiazd rocznie.
      Mark Dickinson z National Optical Astronomy Observatory w Arizonie mówi, że nigdy wcześniej nie znaleziono tak wiekowych galaktyk, które świeciłyby tak jasno.
      Nową galaktykę odkrył zespół astronomów pracujący pod kierownictwem Masami Ouchiego z Uniwersytetu Tokijskiego. Najpierw zauważono ją za pomocą Subaru Telescope na Mauna Kea na Hawajach, a później potwierdzono za pomocą aparatury W.M. Keck Observatory. W ciągu dwóch ostatnich lat trzykrotnie dokonywano pomiarów potwierdzających dane uzyskane o galaktyce.
      Bahram Mobasher, jeden z członków zespołu naukowego, stwierdził, że GN-108036 mogła być przodkiem wielu współczesnych galaktyk.
      GN-108036 powstała zaledwie 750 milionów lat po Wielkim Wybuchu. Obecnie widzimy ją taką, jaka była 12,9 miliarda lat temu. Przesunięcie ku czerwieni galaktyki wynosi 7,2. Znamy niewiele galaktyk, które charakteryzują się przesunięciem większym od 7, a tylko dwie, które leżą dalej od GN-108036. Przesunięcie ku czerwieni to zjawisko przesuwania się długości obserwowalnych fal elektromagnetycznych w kierunku czerwieni. Im dalej leży obiekt, tym większe jest jego przesunięcie ku czerwieni.
×
×
  • Create New...