Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Jak doprowadzić krótkie nici RNA do określonych komórek? Naukowcy z Georgia Institute of Technology i Emory University opisali właśnie metodę enkapsulacji fragmentów kwasu rybonukleinowego w nanocząstkach tioketonowych. Dzięki temu można było doustnie dostarczyć materiał genetyczny do odpowiednich rejonów przewodu pokarmowego zwierząt z nieswoistymi zapaleniami jelit.

Nanocząstki tioketonowe, które zaprojektowaliśmy, są stabilne zarówno w kwasach, jak i zasadach, a ulegają rozkładowi wyłącznie w obecności reaktywnych form tlenu [ang. reactive oxygen species, ROS]. Te ostatnie występują w obrębie objętej stanem zapalnym tkanki układu pokarmowego – tłumaczy prof. Niren Murthy.

Nanocząstki tioketonowe osłaniają cząsteczki krótkiego interferującego RNA (ang. short interfering RNA - siRNA) przed trudnymi warunkami panującymi w jelicie i kierują je bezpośrednio w miejsca rozwoju stanu zapalnego. Jak wyjaśniają Amerykanie, takie zlokalizowane podejście jest konieczne, ponieważ wstrzyknięte układowo siRNA mogą powodować poważne skutki uboczne.

Jak napisano w artykule zamieszczonym w internetowym wydaniu pisma Nature Materials, nanocząstki uzyskuje się z nowego polimeru PPADT; jego nazwa chemiczna to poli-(1,4-fenylenoaceton dimetyleno tioketon). Dzięki wysiłkom inżynieryjnym mają one średnicę ok. 600 nm. W czasie eksperymentów zespół posłużył się mysim modelem wrzodziejącego zapalenia jelita grubego (łac. colitis ulcerosa). Jest to przewlekły proces zapalny błony śluzowej odbytu lub jelita grubego o nieustalonej etiologii. Do jego głównych objawów należą długotrwałe biegunki i/lub zaparcia oraz bóle brzucha, które niekiedy prowadzą do zagrażających życiu powikłań. W ramach studium akademicy podawali myszom doustnie nanocząstki z siRNA hamującym cytokinę zwaną czynnikiem martwicy nowotworu alfa (TNF-α).

Próbki tkanek z okrężnicy leczonej siRNA wykazały obecność nienaruszonego nabłonka jelita i dobrze wyodrębnionych wypukleń oraz fałd półksiężycowatych. Co ważne, zmniejszył się też stan zapalny. Ponieważ wrzodziejące zapalenie jelita grubego ogranicza się do okrężnicy, wyniki potwierdzają, że wypełnione siRNA nanocząstki tioketonowe pozostają stabilne w wolnych od stanu zapalnego okolicach przewodu pokarmowego, obierając na cel zmienione chorobowo tkanki – przekonuje główny autor studium Scott Wilson.

Nanocząstki tioketonowe mają odpowiednie właściwości chemiczne i fizyczne, by poradzić sobie z przeszkodami w postaci płynów jelitowych, tutejszej błony śluzowej czy błon komórkowych. Obecnie badacze pracują nad zwiększeniem wskaźnika degradacji nanocząstek oraz ich reaktywności z ROS. W planach jest także analiza biodystrybucji nanocząstek podczas ich podróży przez organizm.

Będziemy nadal sprawdzać toksyczność polimeru, ale podczas studium odkryliśmy, że nanocząstki tioketonowe z siRNA mają profil cytotoksyczności podobny do nanocząstek z zaaprobowanego przez Agencję ds. Żywności i Leków kopolimeru kwasu DL-polimlekowego i kwasu glikolowego (PLGA) – dodaje Murthy.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu Śląskiego opracowali metodę syntezy, która umożliwia produkcję czystego chemicznie polikaprolaktonu (PCL-u). Jest to polimer ulegający naturalnemu rozkładowi w okresie około dwóch lat. Wykazuje on zgodność tkankową, co oznacza, że może być stosowany w przemyśle farmaceutycznym i medycznym. Dodatkowo polimer ten ma dobre właściwości przetwórcze, jest rozpuszczalny w wielu rozpuszczalnikach organicznych oraz może tworzyć mieszalne blendy polimerowe. Powyższe właściwości sprawiają że ma szerokie zastosowania wielkotonażowe, co przekłada się na zainteresowanie wielu ośrodków naukowych i przemysłowych.
      PCL może być stosowany jako: nośnik w układach kontrolowanego uwalniania leków, podłoże do hodowli tkanek w inżynierii tkankowej bądź materiał wypełniający. Dzięki temu, że naturalnie rozkłada się w organizmie ludzkim, może być również wykorzystywany do produkcji wchłanialnych nici chirurgicznych czy implantów z pamięcią kształtu, takich jak klamry do łączenia złamań kości czy specjalne pręty stosowane do leczenia schorzeń kręgosłupa.
      Zważywszy na interesujące właściwości, polimer ten znajduje także zastosowanie w przemyśle – jako dodatek do opakowań i folii biodegradowalnych, a w połączeniu ze skrobią może być używany do wyrobu tworzywa, z którego otrzymywane są jednorazowe talerzyki czy kubki.
      Ze względu na wielkotonażową produkcję PCL-u i jego szerokie zastosowanie w medycynie, ważne jest usprawnianie procesu jego produkcji, najczęściej poprzez modyfikacje sposobu jego otrzymywania. Docelowo proces ten powinien być kontrolowany w taki sposób, aby producenci otrzymywali PCL o określonych, pożądanych właściwościach przy obniżonych wymaganiach technologicznych.
      Jest to trudne zadanie przede wszystkim ze względu na potencjalne zastosowanie PCL-u w medycynie, gdzie wyprodukowane z niego narzędzia czy obiekty mają kontakt z tkanką ludzką, co wymusza ponadprzeciętną czystość wymaganą przez producentów. Ponadto produkcja tego polimeru powinna być przyjazna dla środowiska naturalnego.
      Interesujące rozwiązanie zaproponowali naukowcy z Uniwersytetu Śląskiego. Zmienili warunki, w których prowadzony jest proces polimeryzacji ε-kaprolaktonu (ε-CL), umożliwiając produkcję polimerów o niespotykanej czystości . Alternatywą okazało się zastosowanie wody jako inicjatora reakcji chemicznej oraz wysokiego ciśnienia jako jej katalizatora. Obecność wody pozwala kontrolować przebieg reakcji, natomiast przeprowadzenie jej w warunkach wysokiego ciśnienia umożliwia otrzymanie produktu o dużej czystości, oznaczającej m.in. brak zawartości jonów metali i zanieczyszczeń organicznych oraz nieorganicznych. Tak otrzymany PCL może być stosowany nie tylko w przemyśle, ale i w medycynie, m.in. do produkcji nici chirurgicznych, jako nośnik leków czy szkielet w inżynierii tkankowej.
      Ponadto zaproponowany sposób ciśnieniowej polimeryzacji ε-kaprolaktonu pozwala na uproszczenie składu mieszaniny reakcyjnej, co skutkuje obniżeniem kosztów produkcji. Opisane rozwiązanie zostało objęte ochroną patentową.
      Autorami wynalazku są pracownicy Wydziału Nauk Ścisłych i Technicznych: mgr inż. Andrzej Dzienia, dr inż. Paulina Maksym, dr hab. Magdalena Tarnacka, dr hab. Kamil Kamiński, prof. UŚ oraz prof. zw. dr hab. Marian Paluch.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Składnik zielonej herbaty - flawonoid galusan epigallokatechiny (EGCG) - pomaga terapeutycznemu krótkiemu interferującemu RNA (ang. small interfering RNA, siRNA) wniknąć do komórki.
      Naukowcy wspominają o dużym potencjale terapeutycznym siRNA, który może wyciszać ekspresję genów związanych z chorobami. Problemem jest jednak, by siRNA dostał się do komórki i mógł zacząć wykonywać swoje zadanie. Ponieważ siRNA są stosunkowo duże i mają ujemny ładunek, niełatwo im pokonać błonę komórkową. Poza tym są one podatne na rozkład przez enzymy - rybonukleazy (RN-azy).
      By jakoś rozwiązać te problemy, naukowcy próbowali powlekać siRNA różnymi polimerami. Niewiele to jednak pomogło; te o niskiej masie molekularnej nie były toksyczne, ale nie potrafiły dostarczyć siRNA do cytozolu, zaś te o dużej masie dawały radę, ale były silnie cytotoksyczne.
      Zespół Yiyuna Chenga zaczął się więc zastanawiać nad wykorzystaniem EGCG, który silnie wiąże się z RNA. Gdyby jeszcze dodać polimer o niskiej masie molekularnej, można by uzyskać nanocząstki, które bezpiecznie dostarczą siRNA do komórek.
      Podczas eksperymentów EGCG i siRNA samoorganizowały się w ujemnie naładowany rdzeń, który naukowcy powlekali skorupą z polimeru o niskiej masie molekularnej.
      W hodowlach komórkowych nanocząstki skutecznie wyłączały ekspresję kilku wybranych genów, a to znaczy, że potrafiły pokonać barierę błony komórkowej. Później autorzy publikacji z pisma ACS Central Science testowali swoje nanocząstki na myszach, u których stan zapalny (uraz) jelita wywołano za pomocą soli sodowej siarczanu dekstranu (ang. dextran sodium sulfate, DSS). W tym przypadku miały one obrać na cel enzym prozapalny. Okazało się, że zastosowanie nanocząstek doprowadziło do zelżenia/wyeliminowania objawów, w tym utraty wagi czy skrócenia jelita grubego.
      Cheng i inni uważają, że zaobserwowane zjawiska to nie tylko skutek wyciszenia genów przez siRNA, ale także wynik przeciwutleniającej i przeciwzapalnej aktywności galusanu epigallokatechiny.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Już w poprzedniej dekadzie interesowano się zastosowaniem interferencji RNA (wyciszania lub wyłączania ekspresji genu przez dwuniciowy RNA) w leczeniu nowotworów. Cały czas problemem pozostawało jednak dostarczanie RNA o sekwencji zbliżonej do wyłączanego wadliwego genu. Naukowcy z MIT-u zaproponowali ostatnio rozwiązanie - zbitki mikrogąbek z długich łańcuchów kwasu nukleinowego.
      Skąd problem z dostarczaniem? Małe interferujące RNA (siRNA, od ang. small interfering RNA), które niszczą mRNA, są szybko rozkładane przez enzymy zwalczające wirusy RNA.
      Paula Hammond i jej zespół wpadli na pomysł, by RNA pakować w tak gęste mikrosfery, że są one w stanie wytrzymać ataki enzymów aż do momentu dotarcia do celu. Nowy system wyłącza geny równie skutecznie jak wcześniejsze metody, ale przy znacznie zmniejszonej dawce cząstek. Podczas eksperymentów Amerykanie wyłączali za pomocą interferencji RNA gen odpowiadający za świecenie komórek nowotworowych u myszy. Udawało im się to za pomocą zaledwie 1/1000 cząstek potrzebnych przy innych metodach.
      Jak tłumaczy Hammond, interferencję RNA można wykorzystać przy wszystkich chorobach związanych z nieprawidłowo funkcjonującymi genami, nie tylko w nowotworach.
      Wcześniej siRNA wprowadzano do nanocząstek z lipidów i materiałów nieorganicznych, np. złota. Naukowcy odnosili większe i mniejsze sukcesy, ale nadal nie udawało się wypełnić sfer większą liczbą cząsteczek RNA, bo krótkich łańcuchów nie można ciasno "ubić". Ekipa prof. Hammond zdecydowała się więc na wykorzystanie jednej długiej nici, którą łatwo zmieścić w niewielkiej sferze. Długoniciowe cząsteczki RNA składały się z powtarzalnych sekwencji nukleotydów. Dodatkowo segmenty te pooddzielano krótkimi fragmentami, rozpoznawanymi przez enzym Dicer, który ma za zadanie ciąć RNA właśnie w tych miejscach.
      Podczas syntezy RNA tworzy arkusze, które potem samorzutnie zwijają się w bardzo zbite gąbkopodobne sfery. W sferze o średnicy 2 mikronów mieści się do 500 tys. kopii tej samej sekwencji RNA. Potem sfery umieszcza się na dodatnio naładowanym polimerze, co prowadzi do dalszego ich ściskania. Średnica wynosi wtedy zaledwie 200 nanometrów, a to niewątpliwie ułatwia dostanie się do komórki. W komórce Dicer tnie długą nić na serię 21-nukleotydowych nici.
    • By KopalniaWiedzy.pl
      Niewykluczone, że w przyszłości uszkodzone naczynia krwionośne będą nam naprawiać samonapędzające się mikromaszyny przypominające pająki. Stworzył je Ayusman Sen z Uniwersytetu Stanowego Pensylwanii. W jego wydaniu składają się one z podzielonych na połówki złotą i krzemionkową sfer.
      Sfery o średnicy mniejszej niż jeden mikrometr są napędzane za pomocą dołączonego do połówki z ditlenku krzemu katalizatora Grubbsa. Po umieszczeniu "pająków" w roztworze norbornenu (monomeru) katalizator Grubbsa przyspiesza reakcję metatetycznej polimeryzacji cykloolefin z otwarciem pierścienia (ROMP), w wyniku której z norbornenu powstaje polinorbornen. Ostatecznie wokół złotej połówki znajduje się o wiele więcej monomeru. Wzrost gradientu osmotycznego prowadzi do przepływu rozpuszczalnika na złotą stronę (naukowcy wyliczają, że wskaźnik dyfuzji wzrasta nawet do 70%), co skutkuje wprawieniem sfery w ruch.
      Sen i inni kontrolowali ruch sfer, umieszczając w rogach zbiornika grudki żelu nasączonego norbornenem. W przyszłości Amerykanie chcą opracować mikropająki, które będą napędzane związkami występującymi w ludzkim organizmie, np. glukozą. Sen widzi dla nich różne zastosowania: od sklejania szczelin w ścianie naczyń po wykrywanie nowotworów.
×
×
  • Create New...