Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Żadna technologia nie chroni nas przed spożywaniem chorobotwórczych bakterii w jedzeniu. Dlaczego zatem za jednym razem nie chorujemy wcale, a innym razem infekcja może być nawet śmiertelna? Czasem sami ułatwiamy sprytnym bakteriom opanowanie naszego organizmu.

Colin Hill, profesor University College Cork wyjaśnia mechanizmy, jakich używają bakterie do sforsowania naszych barier ochronnych na przykładzie pałeczek Listeria monocytogenes, bakterii powodujących groźną dla życia listeriozę, szczególnie niebezpieczną dla osób starszych i kobiet w ciąży. Listeria są obecne powszechnie w naszym środowisku, ich nosicielami są zwierzęta, można je znaleźć w produktach, które zjadamy. Namnażają się szybko, a sprzyjają im techniki przetwarzania i magazynowania żywności. W ciągu ostatniego dziesięciolecia liczba infekcji pałeczkami Listerii w Europie podwoiła się, stąd program badawczy, prowadzony między innymi przez prof. Hilla na irlandzkim uniwersytecie w Cork.

Pierwszą barierą ochronną, jaką napotykają bakterie przyjmowane z pokarmem jest jest żrące środowisko. Soki trawienne w naszym żołądku są mieszaniną kwasów, również nasze jelita są środowiskiem kwaśnym, gdzie nieprzyjazne bakterie giną. A przynajmniej powinny. Nie zawsze tak się dzieje, ponieważ udało im się opanować sprytne strategie obronne, których powodzenie zależy od tego co i jak spożywamy.

Pałeczki Listerii potrafią wykorzystać składniki pożywienia, żeby ochronić się przed kwaśnym środowiskiem i bez szwanku przejść przez nasz żołądek. Takim związkiem jest glutamina (kwas glutaminowy), powszechny aminokwas. Dlatego niebezpieczna dla nas jest żywność która została zanieczyszczona Listerią i jednocześnie zawiera duże ilości glutaminy. Takimi produktami są na przykład miękkie sery (i inna żywność wytwarzana z surowego mleka), czy mięso. Namnażające się w serze, w obecności kwasu glutaminowego, zarazki listeriozy będą odporne na żrące działanie soków żołądkowych. W rezultacie taka sama ilość bakterii, która spożyta z innym posiłkiem byłaby niegroźna, jeśli dostanie się do naszego organizmu z bogatym w glutaminę posiłkiem, może być nawet śmiertelna. Co znaczące: nie musi ona znajdować się bezpośrednio w tym właśnie produkcie. Zwykle posiłek składa się z różnych produktów i jeśli zawiera on składnik z dużą ilością kwasu glutaminowego (na przykład sos pomidorowy), automatycznie zwiększa to ryzyko poważnej infekcji bakteriami znajdującymi się w innym półprodukcie.

Zakażeniom Listerią można zapobiec przez odpowiednie przetwarzanie i przechowywanie produktów, ale także przed takie komponowanie posiłków, które zminimalizuje ryzyko połączenia zarazków z dużą zawartością kwasu glutaminowego. Opracowanie odpowiednich tabel, pozwalających na komponowanie bezpieczniejszych posiłków - nad czym obecnie pracuje profesor Hill - może być szczególnie przydatne w warunkach, gdzie trudno o zachowanie odpowiedniej higieny przetwarzania i przechowywania żywności. Może także zredukować ilość przypadków posocznicy - która też jest powodowana między innymi przez Listerię - zdarzających się w szpitalach.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Nowe studium sugeruje, że poszukiwanie wrażeń nie jest zachowaniem występującym wyłącznie u ludzi i innych kręgowców. Jedną na dwadzieścia pszczół miodnych także należy uznać za amatorkę przygód. Mózg takiego owada wykazuje unikatowy wzorzec aktywności genowej w obrębie szlaków molekularnych, które u naszego gatunku wiążą się właśnie z pogonią za nowościami czy przeszywającym na wskroś dreszczykiem.
      Jak zapewniają entomolodzy z University of Illinois, odkrycia te rzucają nowe światło na wewnętrzne życie ula. Dotąd postrzegano go jako wysoce zdyscyplinowaną kolonię niezmiennych robotnic, które spełniają pewne role, służąc królowej. Teraz zaczyna się wydawać, że poszczególne robotnice różnią się pod względem chęci wykonywania zadań - twierdzi prof. Gene Robinson. Różnice te można po części przypisać zmienności pszczelich osobowości. U ludzi różnice w poszukiwaniu nowości stanowią [przecież] składnik osobowości.
      Amerykanie przyglądali się 2 zachowaniom pszczół, które wyglądały na poszukiwanie nowości: robieniu rozpoznań związanych z gniazdami i źródłami pokarmu. Kiedy kolonia staje się zbyt duża, musi się podzielić i część pszczół zakłada nowe gniazdo. Na jego poszukiwanie wybiera się mniej niż 5% roju. W porównaniu do reszty owadów, tacy zwiadowcy są 3,4 razy bardziej skłonni do zostania pionierami poszukującymi również kolejnych źródeł pokarmu. To złoty standard badań nad osobowością. Jeśli wykazujesz tę samą tendencję w różnych kontekstach, to jest to cecha osobowościowa. Jak podkreśla Robinson, wola odważnych do pokonania jeszcze jednego kilometra może być istotna dla przeżycia reszty społeczności.
      Później Amerykanie posłużyli się analizą mikromacierzy. W mózgach grup zwiadowców i niezwiadowców odkryto różnice w aktywności tysięcy genów. "Spodziewaliśmy się znaleźć jakieś, ale rzeczywista skala nas zaskoczyła, zważywszy, że jedne i drugie pszczoły są zbieraczkami". Kilka genów o odmiennej ekspresji wiązało się z sygnalizacją katecholaminową, a także bazującą na kwasie L-glutaminowym i gamma-aminomasłowym (GABA). Naukowcy skupili się na tych mechanizamach, bo u kręgowców odpowiadają one za regulację poszukiwania nowości i reagowanie na nagrody.
      By sprawdzić, czy za poszukiwanie nowości u pszczół odpowiadają zmiany w sygnalizacji mózgowej, akademicy podawali grupom owadów związki, które nasilają lub hamują działanie wymienionych wyżej neuroprzekaźników. Okazało się, że kwas glutaminowy i oktopamina (jedna z katecholamin) prowokowały zachowania zwiadowcze u pszczół, które wcześniej nie przejawiały takich tendencji. Blokowanie sygnalizacji dopaminowej ograniczało zaś takie działania.
    • przez KopalniaWiedzy.pl
      Bariera krew-mózg chroni układ nerwowy przed szkodliwymi wpływami. Do teraz nie wiedziano jednak, że pomaga także utrzymać delikatną równowagę kwasu glutaminowego. Kwas L-glutaminowy jest ważnym neuroprzekaźnikiem pobudzającym, ale w nadmiarze działa neurotoksycznie.
      Przed badaniami naukowców z Uniwersytetu w Kopenhadze uważano, że za podtrzymywanie równowagi kwasu glutaminowego odpowiadają oddziaływania między różnymi typami komórek w mózgu.
      Bariera krew-mózg odgrywa ważną rolę w tym procesie, odkurzając płyn mózgowo-rdzeniowy z nadmiaru kwasu glutaminowego i pompując go do krwioobiegu, gdzie nie działa toksycznie. Nakreśliliśmy mechanizm biologiczny, na który inni naukowcy mogą się starać wpłynąć chemicznie, np. za pomocą lekarstwa ograniczającego śmierć komórkową po udarze [uszkodzone lub pozbawione tlenu neurony wydzielają kwas glutaminowy, który może nadmiernie stymulować i zabijać sąsiednie komórki] - tłumaczy prof. Birger Brodin.
      Doktorant Hans Christian Helms chwali się, że choć inni badacze podejrzewali, że bariera krew-mózg odgrywa pewną rolę w utrzymywaniu zdrowej równowagi kwasu glutaminowego, to dopiero zespół z Kopenhagi opracował model laboratoryjny pozwalający na przetestowanie tej hipotezy.
    • przez KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu Waszyngtońskiego w St. Louis wykazali, że wykorzystując białko Nmnat1, można zapobiec uszkodzeniom mózgu występującym u dzieci z porażeniem mózgowym (Proceedings of the National Academy of Sciences).
      Amerykanie zademonstrowali, że u nowo narodzonych myszy wysokie stężenia Nmnat1 znacznie zmniejszają uszkodzenia mózgu, do których dochodzi przy ograniczeniu przepływu krwi i niedotlenieniu. Członkowie zespołu mają nadzieję, że ich odkrycia przydadzą się nie tylko przy leczeniu porażenia mózgowego, ale i pacjentów po udarach czy z parkinsonizmem i alzheimeryzmem.
      W normalnych warunkach mózg może sobie poradzić z czasowym zaburzeniem dopływu krwi lub niedotlenieniem, ale gdy występują one łącznie przez dostatecznie długi czas, może dojść do długoterminowej niepełnosprawności, a nawet śmierci. Jeśli zastosujemy lek, który uruchomi ten sam ochronny szlak co Nmnat1, będzie się dało zapobiec uszkodzeniu mózgu w różnych chorobach, także neurodegeneracyjnych - tłumaczy dr David M. Holtzman.
      Akademicy nie wiedzą, na czym polega zabezpieczający wpływ Nmnat1, ale podejrzewają, że białko blokuje działanie neuroprzekaźnika kwasu glutaminowego. Uważają tak, bo uszkodzone lub pozbawione tlenu neurony wydzielają kwas glutaminowy, który może nadmiernie stymulować i zabijać sąsiednie komórki.
      Po raz pierwszy ochronny wpływ Nmnat1 zaobserwował przed 5 laty dr Jeff Milbrandt, który wykazał, że białko może zapobiegać uszkodzeniom nerwów obwodowych w kończynach. Dr Phillip Verghese z laboratorium Holtzmana postanowił potem sprawdzić, czy podobny efekt wystąpi także w mózgu.
      Ekipa z St. Louis porównywała skutki ograniczenia przepływu krwi i niedotlenienia u zwykłych myszy i gryzoni zmodyfikowanych genetycznie w taki sposób, by w ich organizmie powstawało więcej białka Nmnat1. Po 6 godzinach u zwierząt z nadmiarem Nmnat1 występowało znaczne ograniczenie uszkodzenia mózgu.
      Kiedy tydzień później naukowcy oceniali zakres atrofii mózgu, zauważyli, że u myszy z ponadprzeciętnym poziomem Nmnat1 występowało mniej uszkodzeń w kluczowych rejonach, takich jak hipokamp czy kora (ulegają one zniszczeniu w porażaniu mózgowym).
      Późniejsze badania za pomocą rezonansu magnetycznego zademonstrowały, że Nmnat1 może chronić jeszcze lepiej niż początkowo sądzono. Na skanach gryzoni z podwyższonym stężeniem Nmnat1 widać było bowiem niewiele albo nie widać było żadnych uszkodzeń mózgu. Holtzman wyjaśnia, że Nmnat1 zapobiega nekrozie - czyli gwałtownej śmierci komórek.
      Z podobnym mechanizmem mamy do czynienia podczas udaru niedokrwiennego. Umierające neurony zalewają swoje otoczenie kwasem glutaminowym, który uszkadza kolejne komórki. Zespół z St. Louis odtworzył te warunki w probówce. Po dodaniu Nmnat1 ginęło mniej neuronów. Jak widać, możliwości wykorzystania tego białka w terapii i prewencji są naprawdę duże.
    • przez KopalniaWiedzy.pl
      Kobiety w ciąży nie powinny jeść pewnych pokarmów, takich jak miękkie sery pleśniowe, zwłaszcza z niepasteryzowanego mleka. Badanie przeprowadzone przez naukowców z brytyjskiej Agencji Ochrony Zdrowia (Health Protection Agency, HPA) wskazuje, że te same ograniczenia dietetyczne, związane z ryzykiem zapadnięcia na listeriozę, dotyczą również osób z chorobami nowotworowymi. Szczególną ostrożność powinni zachować ludzie przechodzący chemioterapię. I ciąża, i chemioterapia wiążą się z obniżeniem odporności organizmu.
      Listerioza jest bakteryjną chorobą zakaźną, wywoływaną przez Gram-dodatnie pałeczki Listeria monocytogenes. Zakażenie często przebiega bezobjawowo, ale gdy symptomy już wystąpią, przypominają grypę. Należą do nich gorączka, bóle mięśni, wymioty czy biegunka.
      Obecnie pacjentów, którym podawane są wysokie dawki chemioterapeutyków, należy przestrzegać przed zatruciami pokarmowymi. Opisywane studium sugeruje, że zalecenie to powinno się rozszerzyć na wszystkich chorych, poddawanych jakiemukolwiek leczeniu upośledzającemu odporność – podkreśla Martin Ledwick z Cancer Research UK.
      Zespół z HPA przejrzał przypadki 1413 osób, z wyłączeniem ciężarnych, które w latach 1999-2009zaraziły się w Anglii Listeria monocytogenes. Większość z nich cierpiała na schorzenia, które zwiększały podatność na zainfekowanie. Szczególnie narażeni byli pacjenci nowotworowi – ulegali zarażeniu 5-krotnie częściej od ludzi z innymi chorobami, np. cukrzycą. Największy odsetek zakażeń wyliczono dla chorych z nowotworami krwi.
      Nasze badanie pokazało, że ludziom przechodzącym terapie antynowotworowe oraz cierpiącym na szereg schorzeń, w tym cukrzycę oraz choroby nerek czy wątroby, powinno się doradzać, jak chronić swoje zdrowie. Bakterie z rodzaju Listeria mogą wywołać poważną chorobę lub w przypadku osób z inną groźną przypadłością prowadzić nawet do śmierci – podsumowuje dr Bob Adak z HPA.
    • przez KopalniaWiedzy.pl
      Pestka wrzucona do naczynia z pokrojonym awokado oszukuje owoc, że nadal jest cały, co zapobiega utlenianiu i czernieniu. Teraz wygląda na to, że bezużyteczne dotąd pestki mango zostaną wykorzystane jako naturalne konserwanty, chroniące konsumentów przed listeriozą (Journal of Agricultural and Food Chemistry).
      Christina Engels i zespół z University of Alberta przetworzyli trafiające przedtem na wysypisko bądź palone pestki mango, uzyskując ekstrakt z czystymi taninami. Okazało się, że hamuje on rozwój wielu szczepów bakteryjnych, w tym Gram-dodatnich pałeczek Listeria monocytogenes. To ważne odkrycie, ponieważ przebieg listeriozy bywa ciężki i niekiedy chory umiera.
      Engels, która prowadziła badania na potrzeby swojej pracy dyplomowej, uważa, że podobne właściwości mogą wykazywać pestki innych owoców, np. winogron. Przetwarzając pestki dla ich tanin, przedsiębiorcy całkowicie utylizują wszystkie części owocu, zwiększając tym samym swoje zyski. Obecnie mango są jednym z najpopularniejszych owoców świata – plasują się na 5. pozycji listy podstawowych upraw owocowych.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...