Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Najstarsze zalążki kory mózgowej: 600 mln lat temu

Recommended Posts

Jak daleko sięgają ewolucyjne źródła naszego ludzkiego rozumu? Najnowsze badania europejskich biologów molekularnych dowodzą, że przynajmniej 600 milionów lat wstecz, do wspólnego przodka naszego i spokrewnionych z dżdżownicą morskich organizmów: wieloszczetów.

Raju Tomer i Detlev Arendt, uczeni z European Molecular Biology Laboratory (EMBL, Europejskie Laboratorium Biologii Molekularnej) oparli swoje badania na zupełnie nowej metodzie porównawczej. Zamiast porównywać kształt, umiejscowienie i funkcje poszczególnych komórek mózgowych, wybrali katalogowanie genomu w badanych komórkach i porównywanie ekspresji genów metodą nazwaną „profilowaniem komórkowym przez rejestrację obrazów". Pozwoliło im to odnaleźć ewolucyjne podobieństwo pomiędzy mózgiem człowieka a mikromózgiem nereidów - pokrewnych ziemnym dżdżownicom zwierzętom morskim z gromady wieloszczetów, należących do pierścienic.

Dlaczego właśnie wieloszczety? Organizmy te, żyjąc w rytych przez siebie norach aktywnie poszukują pożywienia i wykazują umiejętność uczenia się - dlatego uznano je za doskonały materiał do poszukiwania odpowiedników mózgu kręgowców u bezkręgowców.

Szukano wspólnych elementów - komórek spokrewnionych ewolucyjnie u tak odległych gatunków. I znaleziono. Jak się okazuje, zalążki ludzkiej kory mózgowej to obecne u wszystkich bezkręgowców ciała grzybkowate (nazwane tak ze względu na kształt). Ludzka kora mózgowa jest głównym ośrodkiem uczenia się - gromadzi, analizuje i zapamiętuje informacje zmysłowe i skupia wyższe funkcje mózgu. Podobną rolę - choć oczywiście w ograniczonym zakresie - pełnią ciała grzybkowate w mózgach bezkręgowców: są centrum analizy danych zmysłowych, skojarzeń i podejmowania decyzji w oparciu o doświadczenie. Zostały one odkryte już w 1850 roku przez francuskiego biologa Felixa Dujardina, który jako pierwszy uważał, że pozwalają one insektom podejmować decyzje świadomie, na poziomie wyższym niż instynkt.

Pierwociny ośrodków decyzyjnych opartych na pamięci - jak uważają autorzy badania - musiały wykształcić się wśród organizmów przydennej sfery oceanu, gdzie pod dostatkiem było organicznych szczątków, mogących służyć za pożywienie. W tej sytuacji analizowanie bodźców węchowych w oparciu o zapamiętane doświadczenia pozwalało lepiej wybierać to, co nadawało się do zjedzenia.

Badania w oparciu o nową metodę będą kontynuowane i pozwolą lepiej odtworzyć i zrozumieć ewolucję mózgu, a przez to również funkcje jego poszczególnych obszarów. Naukowcy są ciekawi, jak wyglądał mózg ostatniego wspólnego przodka kręgowców i bezkręgowców i mają nadzieję go zrekonstruować.

Studium zostało opublikowane w periodyku Cell.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Skany mózgu dwóch szczepów myszy wypijających znaczne ilości alkoholu ujawniły, że u zwierząt pozbawionych receptorów dopaminy DRD2 dochodzi do zmniejszenia objętości kory mózgowej i wzgórza. Oznacza to, że receptory DRD2 zabezpieczają przed uszkodzeniami mózgu przez alkohol.
      Dr Foteini Delis, neuroanatom z Behavioral Neuropharmacology and Neuroimaging Lab w Brookhaven, przypomina, że już wcześniejsze odkrycia sugerowały, że receptory dopaminowe D2 chronią przed uzależniającym wpływem alkoholu.
      W ramach najnowszego studium Amerykanie sprawdzali, jak spożycie alkoholu oddziałuje na ogólną objętość mózgu oraz objętość poszczególnych struktur/rejonów u zwykłych myszy oraz gryzoni z wyeliminowanym genem receptorów dopaminowych D2. Przez pół roku połowa każdej z grup piła czystą wodę, a reszta 20-procentowy etanol. Po upływie tego czasu mózg wszystkich zwierząt zbadano za pomocą rezonansu magnetycznego.
      Okazało się, że przewlekłe spożycie alkoholu prowadziło do ogólnej atrofii mózgu, oraz zmniejszenia objętości kory i wzgórza, ale tylko u zwierząt z brakującymi receptorami DRD2. Jeden z członków zespołu, Peter Tanatos, podkreśla, że uszkodzenia mózgu przypominały te widywane u alkoholików, dlatego myszy stanowią wiarygodny model badań. U ludzi te rejony mózgu są krytyczne dla przetwarzania mowy, danych czuciowych oraz sygnałów ruchowych, a także tworzenia długotrwałych wspomnień. Poziom DRD2 poniżej normy zwiększa jednostkową podatność na uszkadzające działanie alkoholu. Ponieważ oznacza on także podwyższone ryzyko uzależnienia, staje się jasne, że to układ dopaminergiczny powinien się stać przedmiotem badań nad istotą i leczeniem alkoholizmu.
    • By KopalniaWiedzy.pl
      Wielkość i kształt ludzkiej kory mózgowej są prawdopodobnie określane przez pojedynczy gen. Do takiego wniosku doszli naukowcy z uniwersytetów Yale, Cambridge, Harvard oraz Northwestern, którzy badali przypadki jednej tureckiej i dwóch pakistańskich rodzin. W rodzinach tych rodzą się dzieci z najcięższymi przypadkami mikrocefalii. Wielkość mózgów noworodków wynosi zaledwie 10% normalnych rozmiarów, a kora mózgowa jest nieprawidłowo ukształtowana. Badania wykazały, że za nieprawidłowości odpowiada pojedynczy gen - NDE1.
      Stopień redukcji rozmiarów kory mózgowej oraz wpływ na morfologię mózgu sugerują, że gen ten odgrywa kluczową rolę w ewolucji ludzkiego mózgu - mówi Murat Gunel z Yale University.
      Te odkrycia pokazują, jak pojedyncza molekuła wpłynęła na rozwinięcie się ludzkiego mózgu w ciągu ostatnich pięciu milionów lat. Jesteśmy krok bliżej do zrozumienia, jak doszło do tego cudu - dodaje uczony.
      W pracach brali też udział naukowcy z Turcji i Arabii Saudyjskiej.
    • By KopalniaWiedzy.pl
      Niektórzy mieli możność obserwować, inni tylko czytać o zachowaniu myszy złapanych przez kota. Gryzonie w takiej sytuacji zamierają. Strach: udawać nieżywego, uciekać, czy atakować? Tak można w skrócie podsumować możliwe strategie w przypadku zagrożenia. Jak się okazuje, za wybór postępowania wobec strachu odpowiadają określone części mózgu i wydzielone grupy neuronów, którymi można sterować farmakologicznie.
      Zaawansowane badania przeprowadziła wspólna ekipa włoskich naukowców z European Molecular Biology Laboratory (Europejskie Laboratorium Biologii Molekularnej, EMBL) w Monterotondo oraz laboratorium firmy farmaceutycznej GlaxoSmithKline w Weronie. Nowoczesne podejście polegało na połączeniu technik modyfikacji genetycznej, farmakologii oraz obrazowanie pracy mózgu myszy przy pomocy funkcjonalnego rezonansu magnetycznego (fMRI).
      Głównym ośrodkiem mózgu reagującym na strach i uczucie zagrożenia jest ciało migdałowate. Działa ono niezależnie od innych struktur mózgu, pozwalając na błyskawiczną reakcję, zanim sytuacja zostanie przetworzona przez korę nową, czyli poddana świadomej analizie. Naukowcy zmodyfikowali genetycznie myszy tak, żeby komórki tzw. typu I w ciele migdałowatym jako reagowały na substancję chemiczną, blokującą ich działanie, w ten sposób można było farmakologicznie „wyłączać" przetwarzanie strachu przez badane gryzonie. Myszy uwarunkowano tak, aby odczuwały strach na określony sygnał dźwiękowy. Funkcjonowanie mózgu straszonych myszy badano przy pomocy fMRI.
      Doświadczenie przyniosło zaskakujące rezultaty, jak mówi Cornelius Gross, prowadzący projekt ze strony EMBL. Kiedy zahamowano działanie neuronów odpowiadających na strach, myszy przestały zastygać ze strachu - tego się spodziewano. Nie spodziewano się natomiast tego, że zamiast zastygać - zaczną reagować na bodziec dźwiękowy w odmienny sposób, np. agresją.
      Doświadczenie pokazało, jak podsumowuje dr Gross, że zablokowanie funkcji ciała migdałowatego wcale nie likwiduje uczucia strachu - to podważa powszechny pogląd na funkcję tego obszaru mózgu. Zamiast tego, zmienia się odruchowa strategia w obliczu zagrożenia - z biernej na czynną, aktywną.
      Funkcjonalny rezonans magnetyczny, w wersji dostosowanej do laboratoryjnych myszy przez Angelo Bifone'a z laboratorium GlaxoSmithKline, wykazał że zmianie strategii obronnej towarzyszy wzmożona aktywność kory mózgowej. Farmakologiczne zablokowanie aktywności kory przy pomocy atropiny z kolei przywróciło pierwotną reakcję na strach - zamieranie w bezruchu.
      Doświadczenie dowodzi, że ciało migdałowate steruje reakcją na strach nie poprzez pień mózgu, jak dotychczas sądzono, ale poprzez korę mózgową. Daje to uczonym zajmującym się funkcjonowaniem mózgu nowe zagadki i tematy do badań.
      Również ludzie reagują na strach według tych schematów: bierności lub agresji. Zrozumienie sposobu, w jaki wybierana jest strategia może mieć istotne znaczenie dla leczenia niektórych chorób, czy w adaptacji do sytuacji stresowych.
    • By KopalniaWiedzy.pl
      Ty ptasi móżdżku! - to popularne wyzwisko jest wyjątkowo związane z nauką, ponieważ wywodzi się z powszechnego mniemania badaczy o wyższości mózgów ssaków nad mózgami ptaków. Brało się ono zaś między innymi z braku u ptaków kory nowej, odpowiedzialnej za złożone działania i procesy poznawcze. Teraz jednak trzeba będzie je odstawić do lamusa - nasze mózgi wcale nie różnią się tak mocno od ptasich.
      Dowodzą tego badacze Szkoły Medycznej San Diego na Uniwersytecie Kalifornijskim (University of California, San Diego School of Medicine), przełamując stereotyp wyższości mózgu ssaczego nad ptasim.
      Przekonanie o tym, że mózgi ssaków są znacznie lepiej rozwinięte ewolucyjnie od mózgów pozostałych zwierząt opierało się istnieniu charakterystycznych struktur przodomózgowia i kory nowej u ssaków. Są to wierzchnie warstwy mózgu, gdzie zgromadzone są złożone funkcje poznawcze. Tych struktur nie odnajdywano u ptaków, gadów, czy płazów, sądzono więc, że komórki nowokorowe wyjątkowa cecha ssaków.
      Doktor Harvey J. Karten, pracownik Wydziału Nauk Neurologicznych pracował ze swoimi współpracownikami nad tym zagadnieniem przez 40 lat. Nowe technologie, obecne w medycynie w ostatnich latach pozwoliły na osiągnięcie przełomowych wyników. Dzięki aparaturze trasującej o wysokiej czułości stworzono plan tej części kresomózgowia kurczaka, która odpowiada ludzkiej korze słuchowej. Badanie wykazało, że ptasi region korowy składa się z warstw komórek, połączonych różnymi rodzajami komórek w postaci wąskich, promieniowych kolumn. Gęsta sieć wzajemnych połączeń tworzy „mikroukłady", które wyglądają identyczne jak te znajdowane u ssaków, a których istnienie u ptaków do tej pory negowano. I tak oto, być może, kończy się pogląd o ssaczej wyjątkowości - podsumowuje dr Karten.
      Odkrycie dowodzi, że warstwowa i promieniowa struktura kory nowej wcale nie jest wyjątkową cechą ssaków. Nie jest więc nową cechą ewolucyjną, a pochodzić musi od dawniejszych kręgowców, prawdopodobnie naszych wspólnych przodków. Jak dalekich? Co najmniej sprzed 300 milionów lat, szacują autorzy badania.
      Wiara, że mikrostruktury kory są wyłączną cechą ssaków brały się z braku wyraźnych warstw w mózgach innych gatunków, a także z powszechnego spostrzeżenia, że mniej zaawansowane ewolucyjnie kręgowce nie są zdolne do wykonywania złożonych procesów analitycznych i poznawczych bazujących na informacjach zmysłowych, takich jak te związane z naszą korą nową - wyjaśnia Karten. - Zwierzęta takie jak ptaki uważano za milusie automaty, zdolne jedynie do działań instynktownych.
      Wyniki badań, poza wartością czysto poznawczą, mają także praktyczną - pokazują, że mózgi mniej ewolucyjnie rozwiniętych gatunków mogą stanowić przydatny model do badań neurologicznych.
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...