Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Piezotroniczne tranzystory - najnowsze osiągnięcie zespołu profesora Zhong Lin Wanga z Georgia Institute of Technology - wykorzystują zjawiska piezoelektryczne do przeprowadzania operacji logicznych.

Lin Wang i jego grupa wykorzystali urządzenia podobne do MEMS (systemy mikroelektromechaniczne) aby wytworzyć pole elektryczne kontrolujące pracę tranzystorów polowych. Profesor Wang twierdzi, że takie tranzystory pracują podobnie do tradycyjnych, z tą jednak różnicą, że pole elektryczne jest generowane dzięki zginaniu nanoprzewodów z tlenku cynku. W tradycyjnych FET ładunek przechowywany jest w bramce.

Piezotroniczne tranzystory mogą z łatwością znaleźć zastosowanie w nanorobotach i innych urządzeniach typu MEMS.

Tego typu rozwiązanie pozwala na bezpośrednie połączenie mechanicznego ruchu z elektroniką. Może stać się też punktem wyjścia do skonstruowania nowej klasy urządzeń logicznych, które będą korzystały z potencjału piezoelektrycznego w miejsce napięcia na bramce - mówi Wang.

Zhong Lin Wang to jeden z czołowych światowych badaczy zjawisk piezoelektrycznych. Od wielu lat pracuje on nad nowymi zastosowaniami dla półprzewodnikowych piezoelektrycznych nanokabl. Dotychczas jednak za każdym razem musiał budować odpowiednie układy scalone od podstaw. Teraz jednak, jeśli udałoby się stworzyć standardowe piezotroniczne obwody i umieścić je na tanim podłożu, opracowywanie nowych urządzeń - od najróżniejszego rodzaju przycisków poprzez czujniki przepływu cieczy po generatory energii elektrycznej wbudowywane w ubrania - przebiegałoby znacznie szybciej niż dotychczas.

Uczeni z Gatech zademonstrowali już, że piezotroniczne tranzystory są w stanie przeprowadzać operacje NOR, XOR, NAND oraz działać jak multiplekser i demultiplekser.

Po raz pierwszy działanie mechaniczne zostało użyte do przeprowadzenia operacji logicznych - mówi Wang.

Obecnie jego zespół pracuje nad wykorzystaniem laserów do kontrolowania przewodnictwa urządzeń piezoelektrycznych. Dzięki temu, że tlenek cynku reaguje na fotony, połączenie go z metalowymi elektrodami i poddanie działaniu światła ultrafioletowego prowadzi do pojawienia się par elektron-dziura i przesunięcia bariery Schottky'ego. To z kolei może przydać się w przyszłości do precyzyjnego kontrolowania urządzeń piezofototronicznych. Ten sam zespół próbuje też stworzyć urządzenia hybrydowe łącząc węglowe nanorurki i nanokable z tlenku cynku.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ile jeszcze lat? Ile? Pytam się!

Kiedy sam wytworze piezotroniczny tranzystor?  :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Po pięciu latach badań laboratorium kierowane przez Zhong Lin Wanga z Georgia Technology Institute, poinformowało o stworzeniu nanogeneratorów zdolnych do zasilania konwencjonalnych urządzeń elektronicznych.
      Nanogeneratory Wanga zbudowane są z materiałów piezoelektrycznych, takich jak tlenek cynku. Pod wpływem ruchu uginają się one i prostują, generując energię elektryczną. Zespół Wanga stworzył nanogeneratory zdolne do wytworzenia energii o napięciu trzech woltów i natężeniu 300 nanoamperów. To wystarczy do zasilenia niewielkich wyświetlaczy ciekłokrystalizcnych, LED-ów czy diod laserowych. Jeśli uda nam się utrzymać obecne tempo udoskonalania naszego produktu, to będziemy w stanie wbudowywać go w urządzenia medyczne, elektronikę osobistą czy urządzenia do monitorowania środowiska - mówi Wang.
      Pierwsze wersje nanogeneratorów z tlenku cynku zakładały hodowanie nanoprzewodów na sztywnym podłożu i dołączanie do nich metalowych elektrod. Najnowsze nanogeneratory wykorzystują polimery i są znacznie łatwiejsze w produkcji.
      Naukowcy z Georgia Technology Institute (Gatech) najpierw hodują nanoprzewody na substracie, a następnie odcinają je od niego i umieszczają w roztworze alkoholu. Całość podlega wysuszeniu na cienkiej metalowej elektrodzie i cienkim kawałku elastycznego polimeru. Po wysuszeniu pierwszej warstwy, jest na niej układana kolejna i jeszcze następna. Proces jest łatwo skalowalny i pozwala na produkcję wydajnych nanogeneratorów. Takie urządzenie o wymiarach 1,5x2 centymetry jest już w stanie zasilić wyświetlacz kalkulatora. Wang mówi, że w najbliższym czasie zaprezentuje nanogeneratory zdolne do zasilania urządzeń monitorujących środowisko pod kątem obecności toksycznych gazów i wysyłających ostrzeżenie. Taki system mógłby zawierać niewielkie kondensatory, gromadzące energię po to, by w miarę potrzeby wysłać silny sygnał ostrzegawczy.
      Grupa Wanga czyni tak szybkie postępy, że nanogeneratory zdolne do zasilania nowoczesnych odtwarzaczy MP3 czy rozruszników serca powinny powstać w ciągu 3-5 lat. Wystarczy bowiem przypomnieć, że obecne pokolenie nanogeneratorów jest 100-krotnie bardziej wydajne niż to sprzed roku.
      W przyszłości postęp będzie zapewne równie szybki, gdyż grupa Wanga opracowała metodę prostszej produkcji nanowłókien tworzonych na bazie cyrkonu i tytanianu ołowiu. Nanowłókna takie są trudne w produkcji, gdyż do wzrostu wymagają temperatury 650 stopni Celsjusza. Opracowana na Gatech metoda dekompozycji hydrotermalnej pozwala na obniżenie tej temperatury do 230 stopni.
    • przez KopalniaWiedzy.pl
      Uczeni z Georgia Institute of Technology (Gatech) opublikowali wyniki badań nad... otrzepywaniem się zwierząt z wody. Temat może wydawać się niepoważny, jednak mówi sporo o dynamice płynów.
      Andrew Dickerson i jego koledzy postanowili sprawdzić, z jaką częstotliwością musi oscylować się skóra psa, by mógł on osuszyć swoje futro. Na potrzeby badań sfilmowali psy wychodzące z wody. Stwierdzili, że np. labrador retriver musi wprawić skórę w oscylację 4,3 Hz.
      Na podstawie takich obserwacji stworzyli matematyczny model otrzepywania się. Uczeni stwierdzili, że woda na futrze utrzymuje się dzięki napięciu powierzchniowemu pomiędzy płynem a włosem. Gdy zwierzę się otrzepuje, siły odśrodkowe wyrzucają wodę. A zatem ruch zwierzęcia musi spowodować, by stały się one większe od siły napięcia powierzchniowego. Naukowcy stwierdzili, że jeśli średnica zwierzęcia wynosi R, to wzór na optymalną częstotliwość otrzepywania się to R0,5. Jest to zgodne z tym, co obserwujemy w naturze - mniejsze zwierzęta muszą otrzepywać się bardziej energicznie, by pozbyć się wody.
      Wzór ten sprawdzono, oglądając filmy z różnymi zwierzętami. Okazało się, że mysz otrzepuje się z częstotliwością 27 Hz, kot 6 Hz, a niedźwiedź 4 Hz. Wzór skorygowano zatem do ostatecznej postaci R0,75.
      Częstotliwość nie skaluje się liniowo, ale wraz ze zwiększaniem się rozmiarów zwierzęcia asymptotycznie zbliża się do 4 Hz.
      Uczeni tłumaczą różnicę pomiędzy swoim wzorem a rzeczywistymi wynikami badań tym, że licząc średnicę zwierzęcia nie brali pod uwagę futra. Tymczasem jego długość może wpływać na wyniki.
    • przez KopalniaWiedzy.pl
      Coraz częściej mówi się, w alarmującym tonie, o bakteriach odpornych na wszelkie antybiotyki. Jak każdy organizm, uodparniają się one na chemiczne trucizny, więc nawet najlepsze leki przestają działać. Tworzenie nowych antybiotyków jest coraz droższe i trudniejsze. Dlatego amerykańscy uczeni planują lekooporne bakterie wysadzać w powietrze, całkiem dosłownie.
      Co ciekawe, sposób ten dostrzegł już Alexander Fleming, ten sam, który wynalazł penicylinę - pierwszy antybiotyk. Wcześniejsze o pięć lat odkrycie poszło wówczas w odstawkę i nie zajmowano się nim niemal wcale przez te lata. Dziś wraca do łask.
      W roku 1923, pięć lat przed odkryciem penicyliny, że pewne substancje w wydzielinach organizmu - śluzie, ślinie czy łzach - zabijają bakterie. Są to enzymy lityczne, a wydzielają je w niezliczonych odmianach również inne bakterie czy wirusy. Dlaczego by z nich nie skorzystać?
      Enzymy lityczne przyczepiają się do zewnętrznej błony komórkowej bakterii i przebijają ją. Wewnętrzne ciśnienie dopełnia działania, powodując rozerwanie i śmierć komórki bakterii. Co istotne, enzymy lityczne działają wybiórczo na określone rodzaje bakterii, w przeciwieństwie do antybiotyków, które są bronią totalną. Enzymy lityczne pozwoliłyby zatem na terapie celowane, bez niszczenia przyjaznej flory bakteryjnej.
      Nim jednak tak się stanie, potrzebne są dokładne i szeroko zakrojone badania nad działaniem i skutecznością różnych rodzajów enzymów na różne szczepy bakterii. Tymczasem prace takie prowadzone są dopiero od niedawna i nie mamy dość wiedzy, żeby zastosować pomysł w praktyce. Ma to się zmienić dzięki pracom, jakie podjęli Joshua Weitz i Gabriel Mitchell, biolodzy z Georgia Institute of Technology, raz Daniel Nelson, biochemik z University of Maryland. Łączą oni obserwacje mikroskopowe z danymi statystycznymi oraz komputerową obróbką i klasyfikacją danych. Ich celem jest stworzenie możliwie pełnego katalogu oddziaływań enzymów litycznych pochodzących z różnych źródeł na różnorakie szczepy bakterii. Uwzględniane jest przy tym genetyczne pokrewieństwo mikroorganizmów.
      Do zastosowań praktycznych jeszcze daleka droga - dobranie odpowiednich enzymów do poszczególnych infekcji, opracowanie - jeśli to możliwe - silniej działających wersji, testy, i tak dalej. Autorzy badań wierzą jednak, że pewnego dnia antybiotykooporne bakterie będą mogły być zniszczone precyzyjnym atakiem enzymatycznym.
    • przez KopalniaWiedzy.pl
      Zespół Zhong Lin Wanga z Georgia Institute of Technology (Gatech) chce wykorzystać proces oddychania do pozyskiwania energii zasilającej system wczesnego ostrzegania przed hypoglikemią. Układ piezoelektryczny składający się z kabli z tlenku cynku umieszczonych na elastycznym przyklejono do przepony szczura. Z każdym oddechem zwierzęcia urządzenie o wymiarach 2x5 milimetrów generowało prąd o natężeniu do 4 pikoamperów i napięciu 2 miliwoltów. Podobne urządzenie przyklejone do serca generowało 30 pikoamperów i 3 miliwolty.
      Pozyskany prąd jest niezwykle słaby, jednak Wang uważa, że wraz z rozwojem techniki uda się zwiększyć napięcie i natężenie na tyle, by możliwe było zasilanie prostych czujników wszczepianych do ciała.
      Urządzenia piezoelektryczne mają tę zaletę, że generują energię niezależnie od kierunku, w którym są wyginane. Można je więc umieszczać w dowolnym miejscu, w którym będzie dochodziło do odkształceń. Uczeni z NASA przyczepili np. ceramiczny piezoelektryczny generator do jednego z mięśni u królika.
      Największym osiągnięciem zespołu z Gatechu jest umieszczenie generatora w miejscu, które stale się porusza i uzyskanie energii z bardzo drobnych ruchów.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...