Czy istnieje bezpieczne palenie?
dodany przez
KopalniaWiedzy.pl, w Medycyna
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Ekspresja genów w łożysku pozwala na przewidzenie rozmiarów mózgu dziecka w momencie urodzenia oraz jego tempa wczesnego rozwoju poznawczego, które – w połączeniu z innymi czynnikami – może w późniejszym życiu doprowadzić do schizofrenii. Odkryty właśnie związek genów i rozwoju poznawczego jest silniejszy u chłopców.
Autorami odkrycia są naukowcy z Lieber institute for Brain Development (LIBD) oraz Wydziału Medycyny University of North Carolina (UNC). Dzięki zidentyfikowaniu aktywacji specyficznych genów w łóżysku, które wydają się być unikatowe dla ryzyka schizofrenii, mogliśmy badać procesy biologiczne, które w przyszłości można będzie wykorzystać do rozpoczęcia leczenia w łonie matki i zmniejszenia ryzyka schizofrenii, mówi Daniel R. Weinberger z Lieber Institute. Dotychczas zapobiegania schizofrenii na tak wczesnym etapie rozwoju było nie tylko niemożliwe, ale nawet niewyobrażalne. Teraz wszystko się zmieniło.
Winberger i jego koledzy opisali swoją pracę w artykule Placental genomic risk scores and early neurodevelopmental outcomes opublikowanym na łamach PNAS.
Zrozumienie odchyleń od normalnego rozwoju mózgu może być kluczowym elementem zapobiegania chorobie, czytamy w artykule. Autorzy badań powołują się na 30 lat innych prac naukowych, które konsekwentnie sugerują, że schizofrenia – zwykle diagnozowana u dorosłych – może rozpoczynać się na na bardzo wczesnym etapie życia, być może już w okresie prenatalnym.
Wiele badań wskazywało, że komplikacje w czasie ciąży, jak infekcje czy niedożywienie, są powiązane z większym ryzykiem wystąpienia schizofrenii. Z mózgach nienarodzonych dzieci stwierdzono ekspresję wielu genów wiązanych ze schizofrenią. W 2018 roku naukowcy z Lieber Institute stwierdzili, że niektóre takie geny są też aktywowane w łożysku, a do aktywacji dochodzi przede wszystkim wówczas, gdy pojawiają się jakieś komplikacje w ciąży, np. stan przedrzucawkowy czy hipotrofia wewnątrzmaciczna.
W czasie poprzednich badań wykryliśmy interakcję pomiędzy genetycznymi czynnikami ryzyka wystąpienia schizofrenii (GRS) a komplikacjami we życiu płodowym (ELC). Stwierdziliśmy, że prawdopodobieństwo wystąpienia schizofrenii jest wyższe, gdy pacjent ma za sobą historię ELC niż gdy jej nie ma, wyjaśniają autorzy najnowszych badań. Wyniki takie wskazywały, że rolę może tutaj odgrywać zdrowie samego łożyska, szczególnie gdy rozwijające się dziecko jest płci męskiej.
Teraz naukowcy postanowili sprawdzić, czy w przypadku osób z historią ELC genetyczne czynniki ryzyka obecne w łożysku odgrywają jakąś rolę w rozwoju neurologicznym do 2. roku życia. Odkryliśmy, że łożyskowe czynniki ryzyka są negatywnie skorelowane z objętością przestrzeni wewnątrzczaszkowej (ICV) w badanej próbce ciąż pojedynczych i mnogich oraz, u dzieci z ciąż pojedynczych, jest skorelowane z gorszym rozwojem funkcji poznawczych w wieku 12 miesięcy oraz równie gorszym, chociaż już nie tak bardzo, rozwojem w wieku 24 miesięcy.
Naukowcy odkryli tez, że u osób dorosłych, u których zdiagnozowano schizofrenię, te same geny, do których ekspresji dochodzi w łożysku, pozwalają przewidzieć rozmiary mózgu. Taki sam związek zauważono u noworodków z tą samą ekspresją genów w łożysku. Nie stwierdzono go jednak w grupie kontrolnej zdrowych dorosłych. Uzyskane wyniki sugerują, że – przynajmniej u osób z historią komplikacji w życiu płodowym – geny powiązane z reakcją łożyska na stres i ewentualnie związane ze schizofrenią, mogą wpływać na rozwój mózgu, kierując go w stronę ewentualnej choroby.
Naukowcy podkreślają jednak, że na rozwój schizofrenii wpływa tak wiele czynników genetycznych i środowiskowych, że dzieci, w przypadku których stwierdzono występowanie niekorzystnej ekspresji genów, wcale nie muszą zachorować na schizofrenię.
Weinberger zauważa, że większość dzieci, w których łożysku wystąpiły geny predestynujące do rozwoju schizofrenii, nie zachoruje, gdyż inne czynniki genetyczne i środowiskowe skompensują w późniejszym życiu niekorzystny wpływ genów z łożyska. Jednak w przypadku osób, u których obok genetycznych czynników ryzyka wystąpiły też komplikacje w czasie życia płodowego, późniejsza kompensacja może nie wystarczyć i dojdzie do rozwoju schizofrenii, szczególnie jeśli są mężczyznami.
U większości osób ze zmienioną ścieżką rozwoju neurologicznego dochodzi do korekty i powrotu do prawidłowego rozwoju, jednak u niektórych rozwój podąża w jeszcze bardziej niewłaściwym kierunku i prowadzi do choroby, stwierdzają naukowcy.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Dotąd wiadomo było, jak wygląda ciąg reakcji uruchamianych przez nikotynę do momentu jej związania z receptorami nikotynowymi na powierzchni neuronów. Słabiej poznano za to proces zachodzący po dostaniu się alkaloidu do komórki. Najnowsze eksperymenty ze specjalnym bioczujnikiem uchyliły jednak rąbka tajemnicy. Naukowcy mają nadzieję, że dzięki temu uda się lepiej zrozumieć naturę uzależnienia od nikotyny.
Zespół prof. Henry'ego Lestera z Caltechu wyjaśnia, że siateczka śródplazmatyczna (ER) pełni funkcję fabryki i magazynu. To tu powstają różne białka, które są następnie pakowane do pęcherzyków transportowych. Należą do nich m.in. acetylocholinergiczne receptory nikotynowe (NACh-R), które ostatecznie trafiają na powierzchnię komórki.
Gdy nikotyna dostanie się do organizmu, za pośrednictwem krwiobiegu dociera do mózgu i neuronów z NACh-R. Związanie z receptorami powoduje uwalnianie dopaminy (wzrost stężenia dopaminy w układzie mezolimbicznym jest odpowiedzialny za uczucie szczęścia).
O wiele mniej wiadomo o tym, co dzieje się po dostaniu nikotyny do komórek. Na razie Lester ustalił, że niektóre receptory NACh-R zostają w siateczce śródplazmatycznej i także mogą się wiązać z nikotyną.
By dokładnie zbadać oddziaływania alkaloidu w komórce, Amerykanie stworzyli bioczujnik iNicSnFRs, złożony ze specjalnego białka, które może się otwierać i zamykać jak pułapka muchołówki oraz inaktywowanego fluorescencyjnego białka.
Sensor ma się "zamykać" na nikotynie. Proces ten aktywuje fluorescencyjne białko, które zaczyna świecić. Na tej podstawie wiadomo, gdzie cząsteczki nikotyny występują i ile ich jest.
Naukowcy mogą umieszczać bioczujniki w konkretnych miejscach. Tym razem zlokalizowali je w siateczce śródplazmatycznej i na powierzchni komórek.
Zespół z Caltechu nagrywał filmy z komórkami z bioczujnikami. Autorzy artykułu z Journal of General Physiology prowadzili eksperymenty na 4 liniach komórkowych (HeLa, SH-SY5Y, N2a i HEK293), a także na mysich neuronach hipokampa i ludzkich neuronach dopaminergicznych uzyskanych z komórek macierzystych. Okazało się, że w przypadku wszystkich nikotyna docierała do retikulum endoplazmatycznego w ciągu 10 sekund od pojawienia się na zewnątrz komórki. Poziom nikotyny w ER to ok. 2-krotność stężenia zewnątrzkomórkowego.
Stwierdzono także, że nikotyna odgrywa rolę stabilizującego farmakologicznego szaperonu dla niektórych podtypów NACh-R, co oznacza, że ułatwia ich właściwe fałdowanie. Dzieje się tak nawet przy stężeniach ~10 nM, a u typowego palacza takie wartości mogą się utrzymywać w ciągu dnia przez 12 godzin. Zwiększa się aktywacja szlaku prowadzącego na zewnątrz, co z kolei sprawia, że neurony stają się wrażliwsze na nikotynę. Można więc powiedzieć, że im więcej ktoś pali, tym szybciej i łatwiej nikotyna na niego zadziała (wzrasta nagradzająca wartość palenia).
Na razie badania prowadzono w laboratorium na izolowanych komórkach, ale naukowcy już myślą o sprawdzeniu, czy wewnątrzkomórkowe poczynania nikotyny są takie same w neuronach żywych myszy.
Co ważne, rozpoczęły się już prace nad biosensorami innych substancji psychoaktywnych, w tym opiodów i antydepresantów.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W majańskiej piersiówce z późnego okresu klasycznego wykryto ślady tytoniu. Dzięki spektrometrii mas zdobyto pierwszy fizyczny dowód, że Majowie naprawdę go używali.
Na pojemniku widniał napis "y-otoot ’u-may", co tłumaczy się jako "miejsce dla jego/jej tytoniu", ale język to jedno, a twardy naukowy dowód drugie, więc archeolodzy nie poprzestali na tłumaczeniu i zajęli się analizą chemiczną. W końcu, jak wyjaśnia Jennifer Loughmiller-Newman z SUNY New Paltz, piersiówka miała służyć do tego, co określono w napisie, ale po drodze ktoś mógł zmienić przeznaczenie przedmiotu albo wszystko skończyło się na zamiarach.
Datowanie ujawniło, że naczynie - jedno ze 150 wchodzących w skład kolekcji Jaya I. Kislaka w Bibliotece Kongresu amerykańskiego - pochodzi z ok. 700 r. n.e. Wykonano ją na południu stanu Campeche.
W wielu piersiówkach znajdował się tlenek żelaza, który wykorzystywano podczas rytuałów pogrzebowych, co utrudniało określenie pierwotnej zawartości, jednak chromatografia gazowa sprzężona ze spektrometrią mas i chromatografia cieczowa z detekcją masową wykazały, że w tym szczególnym pojemniku na pewno przechowywano kiedyś liście tytoniu. Wskazywały na to pozostałości nikotyny.
Badany pojemnik to drugi przypadek naczynia, w przypadku którego hieroglificzny opis wskazujący na konkretne przeznaczenie rzeczywiście pokrywał się z zawartością. "Etykietka" pierwszego, zbadanego 20 lat temu, wskazywała na kakao i rzeczywiście, w środku znaleziono teobrominę - alkaloid purynowy występujący przede wszystkim w ziarnach kakao.
Loughmiller-Newman współpracowała z dr. Dmitrim Zagorevskim z Rensselaer Polytechnic Institute. Wyniki ich badań ukazały się w styczniowym numerze pisma Rapid Communications in Mass Spectrometry.
-
przez KopalniaWiedzy.pl
Otyłe samce myszy mają potomstwo z zaburzeniami metabolicznymi, ponieważ wysokotłuszczowa dieta wywołuje zmiany epigenetyczne w plemnikach. Wcześniej sądzono, że tego typu zjawiska nie mają wpływu na młode, bo przed i po zapłodnieniu dochodzi do "przepakowania" zawartości jądra komórkowego.
Maria Ohlsson Teague i Michelle Lane z Uniwersytetu w Adelajdzie w Australii wykazały, że myszy, którym podawano niezdrową karmę, miały potomstwo podatne na insulinooporność. Oznacza to, że w pewnych regionach plemników zmiany epigenetyczne najwyraźniej się utrzymują.
W ramach pogłębionych badań zidentyfikowano 21 miRNA (jednoniciowych cząsteczek RNA regulujących włączanie i wyłączanie genów), których ekspresja była inna w plemnikach gryzoni jedzących wysokotłuszczową i zdrową karmę. Panie posłużyły się bazą danych znanych miRNA i dzięki temu opisały możliwy wpływ zaobserwowanych zmian. Na samym początku uplasowały się rozwój embrionu i plemników oraz zaburzenia metaboliczne.
Teague uważa, że duża ilość tłuszczu wokół jąder zmienia warunki i sprzyja zmianom epigenetycznym.
-
przez KopalniaWiedzy.pl
Wystawienie komórek jajowych na wysokie stężenia nasyconych kwasów tłuszczowych, jak ma to miejsce w jajnikach kobiet otyłych i cierpiących na cukrzycę typu 2., upośledza rozwój zarodka (PLoS ONE).
Naukowcy z Antwerpii, Hull i Madrytu stwierdzili, że u krów embriony powstające z jaj wystawionych na oddziaływanie wysokiego stężenia nasyconych kwasów tłuszczowych mają mniej komórek, zmianie ulegają też ekspresja genów oraz aktywność metaboliczna. Wszystkie wymienione zjawiska są wskaźnikami zmniejszonej zdolności utrzymania się przy życiu.
Specjaliści podkreślają, że choć studium prowadzono na komórkach jajowych krów, odkrycia mogą pomóc w wyjaśnieniu, czemu kobietom z zaburzeniami metabolicznymi, np. otyłością czy cukrzycą, trudniej zajść w ciążę. Pacjentki z tej grupy metabolizują więcej zmagazynowanego tłuszczu, co skutkuje wyższym stężeniem kwasów tłuszczowych w obrębie jajników, a te są toksyczne dla jaja przed owulacją.
U krów możemy wywołać bardzo podobne zaburzenia metaboliczne prowadzące do zmniejszenia płodności, a szczególnie upośledzenia jakości jaj. Między innymi z tego powodu bydło jest tak interesującym modelem w badaniach nad ludzkim zdrowiem reprodukcyjnym – przekonuje szef zespołu badawczego, prof. Jo Leroy z Uniwersytetu w Antwerpii. Wiemy z wcześniejszych badań, że wysokie stężenie kwasów tłuszczowych może wpłynąć na rozwój komórek jajowych w jajnikach, ale teraz po raz pierwszy wykazaliśmy, że ten negatywny wpływ rozciąga się również na przeżywalność zarodka.
Veerle Van Hoeck, doktorantka z Antwerpii, badała embriony 8 dni po zapłodnieniu. Znajdowały się one wtedy w stadium blastocysty, składającej się z ok. 70-100 komórek. Akademicy przyglądali się m.in. aktywności metabolicznej zarodka, czyli temu, jakie związki pobierał ze środowiska oraz jakie i w jakich ilościach wydalał.
Najbardziej żywotne embriony, te, które z największym prawdopodobieństwem prowadziły do udanej ciąży, cechowały się spokojnym, mniej nasilonym metabolizmem, zwłaszcza w odniesieniu do aminokwasów. Tam, gdzie komórka jajowa była eksponowana na duże stężenia kwasów tłuszczowych, zarodek wykazywał nasilony metabolizm aminokwasów, a także zmienione zużycie tlenu, glukozy oraz mleczanów – wszystko to wskazuje na upośledzenie regulacji metabolizmu i zmniejszoną żywotność – wyjaśnia dr Roger Sturmey z Uniwersytetu w Hull.
Leroy dodaje, że takie embriony wykazują zwiększoną ekspresję genów związanych ze stresem komórkowym. Choć wyższy poziom kwasów tłuszczowych nie zatrzymuje rozwoju zarodka na etapie dwóch komórek, następuje widoczne zmniejszenie liczby komórek zdolnych do przekształcenia się w blastocystę.
Na kolejnych etapach badań akademicy zamierzają sprawdzić, czy skutki wysokiego poziomu kwasów tłuszczowych są widoczne także po narodzinach.
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.