Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Materiały będące jednocześnie ferromagnetykami i ferroelektrykami występują w naturze niezwykle rzadko. Jednak połączenie takich właściwości w jednym materiale jest bardzo pożądane - można by bowiem tworzyć zeń energooszczędne układy pamięci, bardzo wrażliwe czujniki czy charakteryzujące się dużą elastycznością urządzenia emitujące mikrofale.

Pierwszy ferromagnetyczny ferroelektryk - boracyt niklu - został odkryty w 1966 roku. Od ponad 40 lat trwają poszukiwania innych tego typu materiałów. Dotychczas znaleziono kilka, ale żaden z nich nie wykazuje tak silnych właściwości ferroelektrycznych i ferromagnetycznych jak ten pierwszy.

Tak było jeszcze do niedawna. Uczeni z Cornell University stworzyli ferromagnetych ferroelektryczny o tak dobrych właściwościach, że potencjalnie może on zrewolucjonizować elektronikę. Naukowcy zauważyli, że po fizycznym rozciągnięciu kawałka tytanianu europu o grubości kilku nanometrów i umieszczeniu go na podłożu ze skandanu dysprozu uzyskamy najlepszy ze znanych nam materiałów o właściwościach ferrelektrycznych i ferromagnetycznych. Są one 1000-krotnie silniejsze niż występujące w boracycie niklu.

Wcześniej naukowcy szukali materiałów, które w sposób naturalny są ferromagnetycznymi ferroelektrykami - mówi Darrell Schlom, główny autor badań.

My szukaliśmy materiałów, które nie są ani ferromagnetykami, ani ferroelektrykami - a takich jest wiele - ale mogą się takimi stać po ściśnięciu lub rozciągnięciu - wtóruje mu Craig Fennie, jego współpracownik.

Badania Amerykanów pokazują, że warto jest przyjąć właśnie taką strategię poszukiwania ferromagnetycznych ferroelektryków. Niewykluczone, że dzięki niej zostaną znalezione kolejne materiały, o jeszcze lepszych właściwościach.

W przewidywanej przyszłości nie należy spodziewać się powstania żadnych urządzeń z tego typu materiałów. Uczeni z Cornell prowadzili swoje badania w temperaturze zaledwie 4 kelvinów. Teraz szukają materiałów, które mogą wykazywać pożądane właściwości w znacznie wyższych temperaturach.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Inżynierowie z University of California, Berkeley, zaprezentowali sposób na zmniejszenie minimalnego napięcia koniecznego do przechowywania ładunku w kondensatorze. Im szybciej działa komputer, tym cieplejszy się staje. Tak więc kluczowym problemem w produkcji szybszych mikroprocesorów jest spowodowanie, by ich podstawowy element, tranzystor, był bardziej energooszczędny - mówi Asif Khan, jeden z autorów odkrycia. Niestety tranzystory nie stają się na tyle energooszczędne, by dotrzymać kroku zapotrzebowaniu na coraz większe moce obliczeniowe, co prowadzi do zwiększenia poboru mocy przez mikroprocesory - dodaje uczony.
      W laboratorium Sayeefa Salahuddina, w którym jest zatrudniony Khan, od 2008 roku trwają prace nad zwiększeniem wydajności tranzystorów. W końcu, dzięki wykorzystaniu ferroelektryków, udało się osiągnąć założony cel.
      Ferroelektryki przechowują zarówno ładunki dodatnie jak i ujemne. Co więcej, składują je nawet po odłączeniu napięcia. Ponadto ich bardzo przydatną cechą jest możliwość zmiany polaryzacji elektrycznej za pomocą zewnętrznego pola elektrycznego.
      Naukowcy z Berkeley udowodnili, że w kondensatorze, w którym ferroelektryk połączono z dielektrykiem, można zwiększyć ładunek zgromadzony dla napięcia o konkretnej wartości.
      To prototypowe prace, które pozwolą nam wykorzystać zjawisko ujemnej pojemności, by zmniejszyć napięcie wymagane przez współczesne tranzystory - mówi Salahuddin, który już będąc studentem zastanawiał się nad zjawiskiem ujemnej pojemności w ferroelektrykach. Jeśli wykorzystamy to zjawisko do stworzenia niskonapięciowego tranzystora bez jednoczesnego zmniejszania jego wydajności i szybkości pracy, możemy zmienić cały przemysł komputerowy - dodaje uczony.
      Naukowcy połączyli ferroelektryk cyrkonian-tytanian ołowiu (PZT) z dielektrykiem tytanianem strontu (STO). Następnie do PZT-STO przyłożyli napięcie elektryczne i porównali jego pojemność elektryczną do pojemności samego STO.
      W strukturze z ferroelektrykiem zaobserwowaliśmy dwukrotne zwiększenie różnicy potencjałów elektrycznych przy tym samym przyłożonym napięciu, a różnica ta może być jeszcze większa - mówią uczeni.
      Zwiększająca się gęstość upakowania tranzystorów i zmniejszające się ich rozmiary nie pociągnęły za sobą odpowiedniego spadku wymagań co do poboru prądu potrzebnego do pracy. W temperaturze pokojowej do 10-krotnego zwiększenia ilości prądu przepływającego przez tranzystor wymagane jest napięcie co najmniej 60 miliwoltów. Jako, że różnica pomiędzy stanami 0 i 1 w tranzystorze musi być duża, to do sterowania pracą tranzystora konieczne jest przyłożenie napięcia nie mniejszego niż mniej więcej 1 wolt.
      To wąskie gardło. Prędkość taktowania procesorów nie ulega zmianie od 2005 roku i coraz trudniej jest dalej zmniejszać tranzystory - mówi Khan. A im mniejsze podzespoły, tym trudniej je schłodzić.
      Salahuddin i jego zespół proponują dodać do architektury tranzystorów ferroelektryk, dzięki któremu można będzie uzyskać większy ładunek z niższego napięcia. Takie tranzystory będą wydzielały mniej ciepła, więc łatwiej będzie je schłodzić.
      Zdaniem uczonych warto też przyjrzeć się ferroelektrykom pod kątem ich zastosowania w układach DRAM, superkondensatorach czy innych urządzeniach do przechowywania energii.
    • przez KopalniaWiedzy.pl
      Przed dziewięcioma dniami, 2 maja, robot Ranger z Cornell University pobił rekord długości marszu bez doładowywania baterii. Urządzenie szło już od 30 godzin, 49 minut i 2 sekund, gdy nagle zatrzymało się z powodu braku energii. Przeszło w tym czasie 65 kilometrów.
      Test prowadzono w hali sportowej, a Rangerem kierowali na zmianę studenci i współpracownicy profesora Andy'ego Ruiny, w którego laboratorium powstał.
      Ranger znacząco poprawił swój poprzedni rekord, który wynosił 23 kilometry. Wcześniej rekord długości marszu należał do Bigdoga i wynosił 20,5 km.
      Teraz specjaliści z Cornella postanowili stworzyć maszynę, która będzie w stanie przebyć maraton. Po 20 godzinach marszu Ranger przekroczył linię mety maratonu i szedł nadal. Pod koniec byliśmy już bardzo zmęczeni - mówi Violeta Juarez Crow, jedna z osób sterujących robotem.
      Profesor Ruina mówi, że głównym celem badań jest praca nad motoryką robotów wyposażonych w kończyny.
      Ranger korzysta z sześciu małych komputerów, które co 1/500 sekundy wykonują 10 000 linii kodu. Wyposażono go też w dziesiątki czujników, a całość zużywa 4,7 wata.
      Musieliśmy się trochę napracować, by obliczenia, praca czujników i przesyłanie danych nie zużywały zbyt wiele energii. Mamy nadzieję, że wykorzystamy to, czego się nauczyliśmy do stworzenia bardziej zaawansowanych robotów - mówi Jason Cortell, który zaprojektował większość układów elektronicznych dla Rangera.
    • przez KopalniaWiedzy.pl
      Podczas spotkania Amerykańskiej Unii Geofizycznej profesor Natalie Mahowald z Cornell University przedstawiła wyniki swoich unikatowych badań nad poziomem naturalnego zapylenia atmosfery. Wynika z nich, że w ciągu ostatnich 100 lat ilość naturalnego kurzu w powietrzu wzrosła dwukrotnie. Ma to olbrzymi wpływ na klimat i ekologię naszej planety.
      Pyły i klimat wpływają na siebie pośrednio i bezpośrednio na wiele różnych sposobów. Większe zapylenia atmosfery oznacza, że do powierzchni planety dociera mniej promieniowania słonecznego, więc jest ona mniej nagrzewana, co równoważy w pewnym stopniu efekt cieplarniany związany z większą koncentracją dwutlenku węgla. Pył wpływa też na formowanie się chmur, prowadzi do częstszego występowania susz, co z kolei skutkuje pustynnieniem i... większą ilością pyłu w atmosferze. Jednocześnie pył jest ważnym źródłem żelaza w ocenach. Jego większa koncentracja sprzyja wzrostowi planktonu i innych organizmów, które redukują ilość dwutlenku węgla w atmosferze.
      Zespół profesor Mahowald, chcąc ocenić zmiany w naturalnym zapyleniu atmosfery, zbierał dane z rdzeni lodowych, osadów z jezior i koralowców. Powiązali każdą z próbek z prawdopodobnym źródłem pyłu i obliczyli tempo jego opadania na powierzchnię. Uzyskane w ten sposób dane wprowadzili do komputerowego Community Climate System Model, dzięki czemu mogli zbadać wpływ zapylenia na temperaturę, opady, koncentrację żelaza w oceanach oraz na ilość węgla w atmosferze.
      Większość naukowców koncentruje się na badaniu zapylenia powodowanego przez człowieka. Badania zespołu Mahowald pokazały, jak ważny jest naturalny pył pustynny. Dowiadujemy się z nich bowiem, że zmiany w temperaturze i opadach spowodowały, że na przestrzeni XX wieku ilość węgla pochłanianego na lądach zmniejszyła się o 6 ppm (część na milion), a w tym samym czasie zwiększone opadanie naturalnego pyłu do oceanów i rosnąca w nich koncentracja żelaza przyczyniły się do zwiększenia pochłaniania węgla z atmosfery o 4 ppm.
      "W końcu mamy informacje o tym, jak wygląda obieg pustynnego pyłu. Ma to naprawdę duży wpływ na nasze rozumienie klimatu" - mówi profesor Mahowald.
    • przez KopalniaWiedzy.pl
      Jednym z najpoważniejszych wyzwań stojących przed twórcami robotów jest wyposażenie maszyn w "dłonie" zdolne do bezpiecznego chwytania, przenoszenia i pozostawiania przedmiotów. Roboty przemysłowe są projektowane z myślą o wykorzystaniu ich w ściśle określonych sytuacjach, zatem radzą sobie z takimi zadaniami. Jednak jeśli chcemy, by pewnego dnia roboty pomagały nam w domach, musimy dać im możliwość bezpiecznego manipulowania przedmiotami, bez obawy o ich uszkodzenie.
      Specjaliści z Cornell University, University of Chicago oraz firmy iRobot Corp. poinformowali właśnie o stworzeniu uniwersalnego mechanicznego chwytaka. Odeszli oni przy tym od tradycyjnego projektu naśladowania ludzkich dłoni i palców, a do zbudowania chwytaka wykorzystali... lateksowy balon i mieloną kawę.
      Dzięki takiemu rozwiązaniu chwytak przystosowuje się do kształtu przedmiotu. To jedno z rozwiązań najbliższych temu, co może w przyszłości zadebiutować na rynku - stwierdził profesor Hod Lipson z Cornell. Uczony dodał, że jest ono tak uniwersalne, że po udoskonaleniu może posłużyć zarówno do budowy robotów usuwających ładunki wybuchowe, robotów przemysłowych, urządzeń wspinających się po ścianach czy bionicznych rąk dla ludzi.
      Zasada działania chwytaka jest banalnie prosta. Zwykły balon wypełniono zmieloną kawą. Jest on przyciskany do przedmiotu, który ma chwycić i pod wpływem nacisku dochodzi do deformacji i dostosowania balonu do kształtu przedmiotu. Wówczas z balonu wysysane jest powietrze, co wzmacnia uchwyt. Później wystarczy ponownie wpuścić powietrze, a przedmiot zostanie uwolniony.
      Uczeni do wypełnienia balonu wykorzystali zmieloną kawę, gdyż należy od do klasy materiałów, które zmieniają swoje zachowanie pod wpływem ściśnięcia. Wystarczy uświadomić sobie, że gdy kupujemy zapakowaną próżniowo mieloną kawę, jest ona niezwykle twarda. Wystarczy jednak przeciąć torebkę, by całość natychmiast stała się miękka. Luźno ułożone zmielone cząstki kawy bardzo łatwo przesuwają się względem siebie. Wystarczy jednak poddać je niewielkiemu naciskowi, by całość zaczęła zachowywać się jak jednolite ciało stałe.
       
      http://www.youtube.com/watch?v=bFW7VQpY-Ik
    • przez KopalniaWiedzy.pl
      Od ponad wieku wiadomo, że komórki nowotworowe mają odmienny metabolizm od zdrowych komórek i potrzebują gigantycznych ilości energii, dzięki której mogą się mnożyć w nieskończoność i rozprzestrzeniać w organizmie. Od stu lat wiadomo było, że to jest ich słaby punkt, ale dopiero teraz pojawiła się szansa na jego wykorzystanie.
      Cechą charakterystyczną rakowej przemiany materii jest zapotrzebowanie na glutaminę (amid kwasu glutaminowego) - aminokwas niosący energię komórkom. Od dawna szukano sposobu na odcięcie nowotworowych komórek od dostaw tego aminokwasu. Udało się to osiągnąć naukowcom z Cornell University, odkryta przez nich cząsteczka, nazwana 968, blokuje działanie enzymu glutaminazy, który przetwarza glutaminę. Komórki pozbawione metabolizmu glutaminy przestają się mnożyć i umierają, zagłodzone.
      Doświadczenia, jakie przeprowadził profesor Richard Cerione dowiodły, że 968 hamuje wzrost i niszczy raka piersi u myszy, a także raka prostaty, jajników i trzustki. Ponieważ zdrowe komórki nie mają podwyższonego zapotrzebowania na glutaminę, zablokowanie glutaminazy przez cząsteczkę 968 im nie szkodzi.
      Odkrycie daje nadzieję na nową generację skutecznych leków, bez poważnych skutków ubocznych.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...