Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Uczeni z Ohio State University (OSU) zaprezentowali pierwszy układ spintronicznej pamięci z tworzyw sztucznych. Plastik może zatem w przyszłości stać się alternatywą dla półprzewodników.

W najnowszym numerze Nature Materials Arthur J. Epstein, profesor fizyki i chemii opisuje jak wraz z kolegami stworzyli protytypową plastikową pamięć spintroniczną, używając do tego celu technik wykorzystywanych standardowo przez przemysł półprzewodnikowy. Epstein opisuje nowy materiał jako hybrydę organicznego półprzewodnika i magnetycznego półprzewodnika polimerowego.

Spintronika to, obok mechaniki kwantowej, jedna z potencjalnych dróg, którymi rozwiną się komputery przyszłości. Wykorzystanie spinu elektronów w miejsce ich obecności bądź braku, ma liczne zalety. Od możliwości przechowania i przesłania dwukrotnie większej ilości danych na każdy elektron, poprzez energooszczędność i związane z tym znacznie mniejsze wydzielanie ciepła oraz możliwość gęstszego upakowania poszczególnych elementów układów scalonych.

Jeśli zaś moglibyśmy produkować spintroniczne tworzywa sztuczne, będziemy mieli do czynienia z lekką i elastyczną elektroniką.

Kamieniem milowym na drodze do plastikowej spintroniki stał się tetracyjanoetanol wanadu, pierwszy organiczny magnes, pracujący w temperaturze powyżej temperatury pokojowej. Jego twórcami są Epstein oraz Joel S. Miller z University of Utah.

Naszym głównym osiągnięciem jest użycie tego polimerowego magnetycznego półprzewodnika jednocześnie jako polaryzatora spinu, co oznacza, że możemy zapisywać dane używając słabego pola magnetycznego, oraz wykrywacza spinu, co pozwala nam odczytywać dane - mówi doktor Jung-Woo Yoo, który współpracował z oboma uczonymi. Jesteśmy bliżej opracowania podobnego, całkowicie już organicznego, urządzenia - dodał.

Na obecnym stadium prototyp wygląda jak cienki pasek tworzywa sztucznego umieszczony pomiędzy dwoma warstwami metalicznego ferromagnetyku.

W prototypowej pamięci elektrony są umieszczane w polimerze, a magnes nadaje kierunek ich spinowi. Elektrony mogą następnie przejść do konwencjonalnej warstwy magnetycznej, ale tylko wówczas, gdy ich spin jest jednakowy. W przeciwnym razie zbyt duża rezystancja uniemożliwia przejście. Odczyt danych polega na pomiarze wartości oporu.

Podczas testów materiał został poddany działaniu pola magnetycznego, którego siła z czasem ulegała zmianie. Naukowcy, by sprawdzić, czy udało się uzyskać w elektronach dokładnie takie dane, jakie chcieli, przepuścili prąd przez obie warstwy magnetyczne. Badania wykazały, że w zapisie nie było błędów.

Każda fabryka, która obecnie produkuje układy scalone, jest w stanie wykonać takie urządzenia. Dodatkowo do jego wytworzenia wykorzystaliśmy temperatury pokojowe, cały proces jest zatem bardzo przyjazny środowisku - powiedział Yoo.

Share this post


Link to post
Share on other sites

... tetracyjanoetanol wanadu  ::)

Chemicy to jednak mają fantazję - tellurek bizmutu już polubiłem  :D a myślałem że te setki kolorowych odczynników w probówkach, to tylko fantazja scenarzystów filmowych.

Patrząc na tablicę Mendelejewa, nie widać kresu rozwoju technologii - można tak mieszać bez końca  :D

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Świat ma coraz większy problem z plastikowymi odpadami. By mu zaradzić chemicy z Cornell University opracowali nowy polimer o właściwościach wymaganych w rybołówstwie, który ulega degradacji pod wpływem promieniowania ultrafioletowego, dowiadujemy się z artykułu opublikowanego na łamach Journal of the American Chemical Society.
      Stworzyliśmy plastik o właściwościach mechanicznych wymaganych w komercyjnym rybołówstwie. Jeśli  wyposażenie to zostanie zgubione w wodzie, ulegnie degradacji w realistycznej skali czasowej. Taki materiał może zmniejszyć akumulowanie się plastiku w środowisku, mówi główny badacz, Bryce Lipinski, doktorant z laboratorium profesora Geoffa Coatesa. Uczony przypomina, że zgubione wyposażenie kutrów rybackich stanowi aż połowę plastikowych odpadów pływających w oceanach. Sieci i liny rybackie są wykonane z trzech głównych rodzajów polimerów: izotaktycznego polipropylenu, polietylenu o wysokiej gęstości oraz nylonu-6,6. Żaden z nich nie ulega łatwej degradacji.
      Profesor Coates od 15 lat pracuje na nowym rodzajem plastiku o nazwie izotaktyczny tlenek polipropylenu (iPPO). Podwaliny pod stworzenie tego materiału położono już w 1949 roku, jednak zanim nie zajął się nim Coates niewiele było wiadomo o jego wytrzymałości i właściwościach dotyczących fotodegradacji.
      Lipinski zauważył, że iPPO jest zwykle stabilny, jednak ulega degradacji pod wpływem promieniowania ultrafioletowego. W laboratorium widać skutki tej degradacji, jednak są one niewidoczne gołym okiem. Tempo rozpadu tworzywa zależy od intensywności promieniowania. W warunkach laboratoryjnych łańcuch polimerowy uległ skróceniu o 25% po 30-dniowej ekspozycji na UV. Ostatecznym celem naukowców jest stworzenie plastiku, który będzie rozpadał się całkowicie i nie pozostawi w środowisku żadnych śladów. Lipinski mówi, że w literaturze fachowej można znaleźć informacje o biodegradacji krótkich łańcuchów iPPO. Uczony ma jednak zamiar udowodnić, że całkowitemu rozpadowi będą ulegały tak duże przedmioty jak sieci rybackie.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu Śląskiego opracowali metodę syntezy, która umożliwia produkcję czystego chemicznie polikaprolaktonu (PCL-u). Jest to polimer ulegający naturalnemu rozkładowi w okresie około dwóch lat. Wykazuje on zgodność tkankową, co oznacza, że może być stosowany w przemyśle farmaceutycznym i medycznym. Dodatkowo polimer ten ma dobre właściwości przetwórcze, jest rozpuszczalny w wielu rozpuszczalnikach organicznych oraz może tworzyć mieszalne blendy polimerowe. Powyższe właściwości sprawiają że ma szerokie zastosowania wielkotonażowe, co przekłada się na zainteresowanie wielu ośrodków naukowych i przemysłowych.
      PCL może być stosowany jako: nośnik w układach kontrolowanego uwalniania leków, podłoże do hodowli tkanek w inżynierii tkankowej bądź materiał wypełniający. Dzięki temu, że naturalnie rozkłada się w organizmie ludzkim, może być również wykorzystywany do produkcji wchłanialnych nici chirurgicznych czy implantów z pamięcią kształtu, takich jak klamry do łączenia złamań kości czy specjalne pręty stosowane do leczenia schorzeń kręgosłupa.
      Zważywszy na interesujące właściwości, polimer ten znajduje także zastosowanie w przemyśle – jako dodatek do opakowań i folii biodegradowalnych, a w połączeniu ze skrobią może być używany do wyrobu tworzywa, z którego otrzymywane są jednorazowe talerzyki czy kubki.
      Ze względu na wielkotonażową produkcję PCL-u i jego szerokie zastosowanie w medycynie, ważne jest usprawnianie procesu jego produkcji, najczęściej poprzez modyfikacje sposobu jego otrzymywania. Docelowo proces ten powinien być kontrolowany w taki sposób, aby producenci otrzymywali PCL o określonych, pożądanych właściwościach przy obniżonych wymaganiach technologicznych.
      Jest to trudne zadanie przede wszystkim ze względu na potencjalne zastosowanie PCL-u w medycynie, gdzie wyprodukowane z niego narzędzia czy obiekty mają kontakt z tkanką ludzką, co wymusza ponadprzeciętną czystość wymaganą przez producentów. Ponadto produkcja tego polimeru powinna być przyjazna dla środowiska naturalnego.
      Interesujące rozwiązanie zaproponowali naukowcy z Uniwersytetu Śląskiego. Zmienili warunki, w których prowadzony jest proces polimeryzacji ε-kaprolaktonu (ε-CL), umożliwiając produkcję polimerów o niespotykanej czystości . Alternatywą okazało się zastosowanie wody jako inicjatora reakcji chemicznej oraz wysokiego ciśnienia jako jej katalizatora. Obecność wody pozwala kontrolować przebieg reakcji, natomiast przeprowadzenie jej w warunkach wysokiego ciśnienia umożliwia otrzymanie produktu o dużej czystości, oznaczającej m.in. brak zawartości jonów metali i zanieczyszczeń organicznych oraz nieorganicznych. Tak otrzymany PCL może być stosowany nie tylko w przemyśle, ale i w medycynie, m.in. do produkcji nici chirurgicznych, jako nośnik leków czy szkielet w inżynierii tkankowej.
      Ponadto zaproponowany sposób ciśnieniowej polimeryzacji ε-kaprolaktonu pozwala na uproszczenie składu mieszaniny reakcyjnej, co skutkuje obniżeniem kosztów produkcji. Opisane rozwiązanie zostało objęte ochroną patentową.
      Autorami wynalazku są pracownicy Wydziału Nauk Ścisłych i Technicznych: mgr inż. Andrzej Dzienia, dr inż. Paulina Maksym, dr hab. Magdalena Tarnacka, dr hab. Kamil Kamiński, prof. UŚ oraz prof. zw. dr hab. Marian Paluch.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Już pojedyncza sesja ćwiczeń wystarczy, by zwiększyć aktywację obwodów mózgowych związanych z pamięcią, w tym hipokampa, który kurczy się z wiekiem.
      Dotąd udało się wykazać, że regularne ćwiczenia mogą zwiększać objętość hipokampa. Nasze badanie uzupełnia wiedzę na ten temat i pokazuje, że pojedyncze sesje ćwiczeń [ang. acute exercise] także mogą wpłynąć na ten ważny obszar mózgu - podkreśla dr J. Carson Smith ze Szkoły Zdrowia Publicznego Uniwersytetu Maryland.
      Zespół Smitha mierzył za pomocą funkcjonalnego rezonansu magnetycznego (fMRI) aktywność mózgu 26 zdrowych ochotników w wieku 55-85 lat, którzy mieli wykonywać zadanie pamięciowe (identyfikowali sławne i "zwykłe" nazwiska). Co istotne, zapamiętywanie sławnych nazwisk aktywuje sieć neuronalną związaną z pamięcią semantyczną, która pogarsza się z wiekiem.
      Test przeprowadzano 2-krotnie na oddzielnych wizytach w laboratorium: 1) pół godziny po sesji umiarkowanie intensywnych ćwiczeń (70% maksymalnego wysiłku) na rowerze stacjonarnym albo 2) po okresie odpoczynku.
      Sesja ćwiczeń wiązała się z zachodzącą w odpowiednim momencie większą aktywacją pamięci semantycznej w zakręcie czołowym środkowym, zakręcie skroniowym dolnym, zakręcie skroniowym środkowym i zakręcie wrzecionowatym. Widoczna była także zwiększona obustronna aktywacja hipokampa.
      [...] Pojedyncze sesje ćwiczeń mogą wpływać na poznawcze obwody neuronalne w korzystny sposób, który sprzyja długoterminowym adaptacjom i przyczynia się do zwiększonej integralności/lepszego działania sieci, a więc skuteczniejszego dostępu do wspomnień.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Rozwój spintroniki zależy od materiałów gwarantujących kontrolę nad przepływem prądów spolaryzowanych magnetycznie. Trudno jednak mówić o kontroli, gdy nieznane są szczegóły transportu ciepła przez złącza między materiałami. Cieplna luka w naszej wiedzy została właśnie wypełniona dzięki polsko-niemieckiemu zespołowi fizyków, który po raz pierwszy dokładnie opisał zjawiska dynamiczne zachodzące na złączu między ferromagnetykiem a półprzewodnikiem.
      Spintronika to następczyni wszechobecnej elektroniki. W urządzeniach spintronicznych prądy elektryczne próbuje się zastępować prądami spinowymi. Obiecującym materiałem dla tego typu zastosowań wydaje się być złącze arsenku galu z krzemianem żelaza: na każde cztery elektrony przepływające przez złącze aż trzy niosą tu informację o kierunku momentu magnetycznego. Do tej pory niewiele było jednak wiadomo, jak zmieniają się właściwości dynamiczne złącza, decydujące o przepływie ciepła. Połączenie sił Instytutu Fizyki Jądrowej Polskiej Akademii Nauk (IFJ PAN) w Krakowie, Instytutu Technologicznego w Karlsruhe (KIT), Instytutu Paula Drudego w Berlinie i ośrodka badawczego DESY w Hamburgu pozwoliło tę zagadkę wreszcie rozwiązać.
      Układy z krzemianu żelaza Fe3Si i arsenku galu GaAs są szczególne. Oba materiały znacznie różnią się właściwościami: pierwszy jest bardzo dobrym ferromagnetykiem, drugi to półprzewodnik. Natomiast stałe sieci, czyli charakterystyczne odległości między atomami, w obu materiałach różnią się zaledwie o 0,2%, są więc niemal identyczne. W rezultacie materiały te świetnie się łączą, a na złączach nie ma defektów ani znaczących naprężeń - mówi dr hab. Przemysław Piekarz (IFJ PAN).
      Grupa skoncentrowała się na przygotowaniu teoretycznego modelu drgań sieci krystalicznych w badanym złączu. Istotną rolę odegrało tu oprogramowanie PHONON, stworzone i od ponad 20 lat rozwijane przez prof. dr hab. Krzysztofa Parlińskiego (IFJ PAN). W oparciu o podstawowe prawa mechaniki kwantowej wyliczane są tu siły oddziaływań między atomami, co pozwala rozwiązywać równania opisujące ruch atomów w sieciach krystalicznych.
      Dr hab. Małgorzata Sternik (IFJ PAN), która wykonała większość obliczeń, wyjaśnia: W naszym modelu podłożem jest arsenek galu, którego najbardziej zewnętrzna warstwa składa się z atomów arsenu. Nad nią znajdują się naprzemiennie ułożone warstwy z atomami żelaza i krzemu oraz samego żelaza. Drgania atomowe wyglądają inaczej dla litego kryształu, a inaczej w pobliżu interfejsu. Dlatego badaliśmy, jak zmienia się widmo drgań w zależności od odległości od interfejsu.
      Dynamika atomów w kryształach nie jest przypadkowa. Materiały te charakteryzują się dużym uporządkowaniem. W efekcie ruch atomów nie jest tu chaotyczny, lecz podlega pewnym, niekiedy bardzo złożonym wzorcom. Za transport ciepła odpowiadają głównie fale akustyczne poprzeczne. Oznacza to, że przy analizie dynamiki sieci badacze musieli ze szczególną uwagą przyglądać się drganiom atomowym zachodzącym w płaszczyźnie równoległej do złącza. Gdyby fale drgań atomów w obu materiałach były do siebie dopasowane, ciepło efektywnie przepływałoby przez złącze.
      Próbki materiałów Ge/Fe3Si/GaAs, zawierające różną liczbę monowarstw krzemianu żelaza (3, 6, 8 oraz 36), zostały przygotowane w Instytucie Paula Drudego przez Jochena Kalta, doktoranta w Instytucie Technologicznym w Karlsruhe. Same doświadczenia zrealizowano w synchrotronie Petra III, na linii pomiarowej Dynamics Beamline P01 w ośrodku DESY.
      Pomiar widma drgań atomowych w ultracienkich warstwach jest wielkim wyzwaniem dla fizyków ciała stałego - mówi kierujący eksperymentem dr Svetoslav Stankov (KIT) i dodaje: Dzięki wyjątkowym własnościom promieniowania synchrotronowego, potrafimy obecnie za pomocą nieelastycznego rozpraszania jądrowego wyznaczać z dużą rozdzielczością widmo drgań atomowych w nanostrukturach. W naszych pomiarach wiązka promieniowania synchrotronowego padała na złącze w kierunku praktycznie równoległym do jego powierzchni. Takie ustawienie gwarantowało możliwość obserwacji drgań atomowych zachodzących równolegle do złącza. Co więcej, jest to pomiar selektywny dla atomów żelaza, bez zaburzenia pochodzącego od tła.
      Okazało się, że mimo podobieństw struktury krystalicznej obu materiałów, drgania atomów w pobliżu interfejsu znacznie różnią się od tych w litym materiale. Obliczenia z pierwszych zasad doskonale pokryły się z wynikami eksperymentalnymi, odtwarzając nowe cechy w widmach drgań atomów.
      Niemal doskonała zgodność teorii z eksperymentem otwiera drogę do nanoinżynierii fononowej, która może doprowadzić do powstania bardziej wydajnych urządzeń termoelektrycznych i efektywnego zarządzania przepływem ciepła - podsumowuje dr Stankov.
      Złącze Fe3Si/GaAs okazało się doskonałym układem do badania własności dynamicznych i spintronicznych. W przyszłości zespół naukowców, finansowany przez Narodowe Centrum Nauki (2017/25/B/ST3/02586), Helmholtz Association (HGF, VH-NG-625) i German Ministry for Research and Education (BMBF, 05K16VK4), zamierza rozszerzyć zakres badań interfejsu w celu dokładnego poznania jego własności elektronowych i magnetycznych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Międzynarodowa grupa naukowa pracująca pod przewodnictwem inżynierów z Narodowego Uniwersytetu Singapuru opracowała nowe urządzenie spintroniczne do manipulowania cyfrową informacją. Jest ono 20-krotnie bardziej wydajne i 10-krotnie bardziej stabilne niż dostępne obecnie rozwiązania komercyjne. Nowe urządzenie zostało opracowane we współpracy z naukowcami z Instytutu Technologicznego Toyoty oraz Uniwersytetu Koreańskiego.
      Nasze odkrycie może stać się nową platformą rozwojową dla przemysłu spintronicznego, który obecnie zmaga się z problemami związanymi z niestabilnością i skalowalnością, gdyż wykorzystuje się tutaj bardzo cienkie elementy magnetyczne, mówi profesor Yang Hyunso z Singapuru.
      Obecnie na świecie powstają olbrzymie ilości cyfrowych informacji. Istnieje więc duże zapotrzebowanie na tanie, energooszczędne, stabilne i skalowalne produkty do przechowywania tej informacji i manipulowania nią. Stawiane warunki mogłyby spełniać materiały spintroniczne bazujące na rozwiązaniach ferromagnetycznych. Jednak wciąż są one bardzo drogie z powodu problemów ze skalowalnością i stabilnością. Układy pamięci bazujące na ferromagnetykach nie mogą mieć grubości większej niż kilka nanometrów, gdyż efektywność ich okablowania wykładniczo spada wraz z rosnącą grubością. Zaś obecna grubość jest niewystarczająca, by zapewnić stabilne przechowywanie danych w warunkach naturalnie wahających się temperatur, wyjaśnia doktor Yu Jiawei.
      Uczeni, aby poradzić sobie z tym problemem, zaprzęgli do pracy materiały ferrimagnetyczne. Zauważyli, że mogą być one 10-krotnie grubsze niż materiały ferromagnetyczne i nie wpływa to na ich wydajność. W ferrimagnetykach spin elektronów napotyka na minimalne opory. To jest taka różnica, jakbyśmy jechali samochodem drogą 8-pasmową, w porównaniu do jazdy 1-pasmową ulicą w mieście. Dla spinu ferromagnetyk to jak wąska ulica w mieście, zaś ferrimagnetyk jest jak szeroka autostrada, mówi jeden z badaczy, Rahul Mishra.
      Pamięć stworzona z materiału ferrimagnetycznego okazała się 10-krotnie bardziej stabilna i 20-krotnie bardziej wydajna niż pamięć z ferromagnetyku. Zdaniem profesora Yanga, za różnicę w wydajności odpowiada unikatowe uporządkowanie atomów.W ferrimagnetykach sąsiadujące ze sobą domeny magnetyczne są zwrócone do siebie przeciwnymi znakami. Zaburzenia spinu powodowane przez jeden atom, są kompensowane przez sąsiedni. Dzięki temu informacja może przepływać szybciej, dalej i przy mniejszym zużyciu energii, stwierdził.
      Na kolejnym etapie badań naukowcy przyjrzą się już nie tylko problemowi przesyłania informacji w ferrimagnetykach, ale zbadają też tempo jej odczytu i zapisu. Spodziewają się, że będzie ono niezwykle szybkie. Chcą też rozpocząć współpracę z przemysłem, by ich wynalazek jak najszybciej trafił do praktycznego użycia.

      « powrót do artykułu
×
×
  • Create New...