Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Pielenie rybiego ogródka
dodany przez
KopalniaWiedzy.pl, w Nauki przyrodnicze
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Niemieccy naukowcy ożywili glony, które przez 7000 lat spoczywały zagrzebane na dnie Morza Bałtyckiego. Okrzemki przez tysiące lat nie miały dostępu do tlenu i światła. Były nieaktywne. Uczeni z Instytutu Badań Morza Bałtyckiego im. Leibniza w Warnemünde (Leibniz-Institut für Ostseeforschung Warnemünde) prowadzili badania w ramach projektu PHYTOARK, którego celem jest zrozumienie przyszłości Morza Bałtyckiego za pomocą badania jego przeszłości.
Wiele organizmów stosuje hibernację, by przetrwać niekorzystne warunki. Dzieje się tak również fitoplanktonem, który w stanie hibernacji opada na dno, jest przykrywany kolejnymi warstwami osadów i trwa w warunkach beztlenowych. Takie depozyty to kapsuły czasu, pozwalające nam poznać przeszłość ekosystemów i zamieszkujących je organizmów, ich rozwój oraz zmiany genetyczne, wyjaśnia Sarah Bolius.
Dzięki wyraźnej stratyfikacji osadów z dna Bałtyku, można poszczególnym warstwom uśpionych glonów przypisać zakres dat, w których warstwy te powstały, a badając inne składniki osadów naukowcy są w stanie określić, jakie było wówczas zasolenie wód, poziom tlenu czy ich temperatura. Łącząc te informacje możemy lepiej zrozumieć, jak i dlaczego fitoplankton na Bałtyku adaptował się do zmian środowiskowych.
Przywrócone do życia glony zostały pobrane z głębokości 240 metrów. Jedynym gatunkiem fitoplanktonu, który udało się ożywić ze wszystkich próbek, był Skeletonema marinoi. Jest on szeroko rozpowszechniony w Morzu Bałtyckim, pojawia się wiosną podczas zakwitów. Najstarsza warstwa, w której ożywiono glony pochodziła sprzed 6871±140 lat. Kierująca badaniami Sarah Bolius mówi, że najbardziej istotnym osiągnięciem jest fakt, że po 7000 lat hibernacji okrzemki nie utraciły nic ze swoich funkcji życiowych. Wszystkie procesy przebiegają w nich równie sprawnie, jak w obecnie żyjących okrzemkach. Badania genetyczne wykazały zaś, że okrzemki z każdej warstwy różnią się genetycznie między sobą.
Badane przez Niemców okrzemki są jednymi z najstarszych organizmów, jakie udało się obudzić w stanie nienaruszonym z hibernacji. Są też najstarszym organizmem obudzonym z osadów wodnych. Więcej o badaniach można przeczytać na łamach The ISME Journal.
Więcej o niepokojących zmianach na Bałtyku, jego przeszłości, teraźniejszości i przyszłości opowiedział nam w wywiadzie doktor Tomasz Kijewski z Instytutu Oceanologii PAN.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Już wkrótce niewygodne kombinezony ochronne czy odkażanie po opuszczeniu obfitującego w bakterie czy niebezpieczne związki chemiczne rejonu mogą zastąpić ubrania z samoczyszczącej się bawełny. By tak się stało, wystarczy je wystawić na oddziaływanie światła.
Nowa tkanina może znaleźć zastosowanie w odzieży ochronnej dla pracowników służby zdrowia, przetwórstwa spożywczego czy rolników, a także personelu wojskowego – wyjaśnia Ning Liu z Uniwersytetu Kalifornijskiego w Davis.
Liu zaimpregnowała bawełnianą tkaninę kwasem 2-antrachinonokarboksylowym (ang. 2-anthraquinone carboxylic acid, 2-AQC). Tworzy on mocne wiązania z wchodzącą w skład bawełny celulozą, dlatego w odróżnieniu od obecnie stosowanych samoczyszczących czynników, trudno go zmyć lub sprać. Co ważne, nie dochodzi do zmiany właściwości tkaniny (wcześniej się to nie udawało).
Po ekspozycji 2-AQC na światło powstają reaktywne formy tlenu, np. rodnik wodorotlenowy (in. hydroksylowy, •OH) czy nadtlenek wodoru (H2O2), które zabijają bakterie i rozkładają związki organiczne, takie jak pestycydy.
Naukowcy podkreślają, że choć 2-AQC jest stosunkowo drogi, istnieją tańsze zastępniki.
-
przez KopalniaWiedzy.pl
Po raz pierwszy w historii nauki biolodzy opisali rośliny żyjące wewnątrz komórek kręgowców. Okazało się bowiem, że glony występują nie tylko pod osłoną jaj ambystomy plamistej (Ambystoma maculatum), ale i w komórkach rozwijających się embrionów. Co więcej, kanadyjsko-amerykański zespół uważa, że algi są najprawdopodobniej dziedziczone po rodzicach.
Zespół doktora Ryana Kerneya z Dalhousie University opublikował wyniki swoich badań w piśmie Proceedings of the National Academy of Sciences. O tym, że glony występują w jajach ambystom, wiedziano już od długiego czasu, problemem było jednak to, jak się tam dostają. Sprawa się nieco wyjaśniła, gdy odkryto DNA glonów w organach reprodukcyjnych dorosłych płazów. Wydaje się zatem możliwe, że ulegają one dziedziczeniu. Nazywamy to transmisją wertykalną, ale prawdopodobnie mamy do czynienia z połączeniem tego zjawiska i alg absorbowanych z otoczenia.
Kerney wyjaśnia, że w jajach glony zapewniają rozwijającym się embrionom tlen, a z kolei algi korzystają z wydalin płodu, w których znajduje się sporo potrzebnego roślinom azotu. Same ambystomy plamiste rzadko pojawiają się na powierzchni (przez większość czasu ukrywają się w korzeniach drzew, pod kamieniami itp., a wiosną mniej więcej o tej porze kończy się ich hibernacja), ale galaretowate pakiety jaj umieszczają blisko powierzchni wody. Trudno więc sobie wyobrazić lepsze warunki do życia dla glonów.
Akademicy z Dalhousie University oraz Indiana University posłużyli się mikroskopem fluorescencyjnym. Dzięki temu mogli stwierdzić, że pigmenty glonów jarzyły się wewnątrz komórek płaza po oświetleniu światłem o określonej długości fali. Przed tym odkryciem naukowcy sądzili, że rośliny nie mogą żyć wewnątrz komórek kręgowców. Płazy, ptaki czy ssaki mają przecież wysoce wyspecjalizowany układ odpornościowy, który powinien zwalczać obce organizmy. Tymczasem algi naprawdę opanowują tkanki kręgowców.
Pierwszy przypadek endosymbiozy eukariotycznych glonów w komórkach kręgowców sugeruje, że być może to wcale nie jest odosobniony przypadek. Ponieważ u innych ambystom, salamander i żab w jajach także występują algi, niewykluczone, że i u nich nie ograniczają się one wyłącznie do osadzania na osłonie czy infiltrowania przez nią, trafiając ostatecznie do komórek embrionu.
Związek jaj ambystomy z glonami zaobserwowano ponad 100 lat temu. Zyskał on formalną nazwę w 1927 r., gdy Lambert Printz nadał algom wiele mówiącą nazwę Oophilia amblystoma (nazwę rodzaju można przetłumaczyć jako "kochający jaja"). Natury symbiozy nie poznano jednak aż do lat 80. ubiegłego wieku, gdy wykazano eksperymentalnie, że pod nieobecność glonów embriony nie rozwijają się tak szybko. Podobnie było zresztą z algami. Bez płodów ambystom do towarzystwa rosły wolniej.
Kanadyjsko-amerykański zespół skorzystał z techniki zwanej fluorescencyjną hybrydyzacją in situ (FISH od ang. fluorescence in situ hybridization). Pozwoliła ona na wykrycie sekwencji 18S rRNA unikatowej dla Oophilia za pomocą specjalnych fluorescencyjnych sond.
-
przez KopalniaWiedzy.pl
Celuloza z osłonic, morskich strunowców, może oddziaływać na zachowanie komórek mięśni szkieletowych. Naukowcy z Uniwersytetu w Manchesterze twierdzą, że to dobry sposób na uzyskanie działającej tkanki mięśniowej.
Polisacharyd w formie miniwąsów jest kilkakrotnie mniejszy od komórek mięśniowych, mimo to wpływa na ich porządkowanie. To niezwykle ważne, ponieważ wiele tkanek ciała, w tym mięśnie, zawiera uporządkowane włókna, które zapewniają im wytrzymałość i sztywność. Celuloza już teraz znajduje różne zastosowania medyczne, np. w opatrunkach, ale po raz pierwszy zaproponowano, by wykorzystać ją do utworzenia mięśni szkieletowych.
Celuloza z osłonic jest szczególnie dobra do "produkcji" tkanki mięśniowej, ma bowiem pewne charakterystyczne właściwości. Doktorzy Stephen Eichhorn i Julie Gough oraz doktorant James Dugan wyekstrahowali polisacharyd z miniaturowych wąsów o średnicy zaledwie kilkudziesięciu nanometrów. Kiedy wąsy ułożono równolegle do siebie, powodowały one szybkie porządkowanie i fuzję miocytów.
Tworzenie sztucznych mięśni, które można by wykorzystać do zastępowania uszkodzonych lub chorych naturalnych, to wielka szansa dla całych rzesz pacjentów. Choć mamy do czynienia ze złożonym procesem [ekstrakcji], potencjalne zastosowania są bardzo interesujące – przekonuje dr Eichhorn.
Celulozą interesują się naukowcy z całego świata. Dzieje się tak z powodu jej unikatowych właściwości, poza tym jest ona surowcem odnawialnym. Jak widać, przyda się przy precyzyjnej inżynierii mięśniowej, niewykluczone też, że podczas odtwarzania innych uporządkowanych struktur, np. nerwów i więzadeł.
-
przez KopalniaWiedzy.pl
Biolodzy odkryli na głębokości ponad 200 m dwa typy prehistorycznych glonów, które nazwali żywymi skamieniałościami. Wg nich, mogły powstać ze wspólnego przodka wszystkich zielonych roślin ok. 1 mld lat temu.
Algi te występują w morzu na stosunkowo dużych głębokościach – 210 m, a to dużo jak na fotosyntetyzujący organizm. Można je spotkać w płytszych wodach, ale zazwyczaj pod rafami, gdzie dociera niewiele światła. Wydaje się, że glony mają specjalny chlorofil, który pozwala im wykorzystywać światło z niebieskiego zakresu długości fal – opowiada prof. Frederick Zechman z Uniwersytetu Stanowego Kalifornii, który nawiązał współpracę z innymi Amerykanami i Belgami. Razem pobierali próbki skategoryzowanych już wcześniej roślin z rodzajów Palmophyllum i Verdigellas (Palmophyllum z wód w okolicach Nowej Zelandii, a Verdigellas z zachodniej części Atlantyku).
Zespół Zechmana jako pierwszy przeprowadził badania genetyczne glonów: analizowano gen tworzącego małą podjednostkę rybosomu 18S rRNA oraz dwa geny chloroplastów (atpB i rbcL). To wtedy okazało się, z jak starym znaleziskiem mamy do czynienia. Ustalono, że algi są co prawda wielokomórkowe, ale pojedyncze komórki wydają się ze sobą słabo powiązane. Tworzą one galaretowatą macierz, przyjmującą kształt m.in. łodygi.
Przed zakończeniem analiz biolodzy sądzili, że nowo odkryte glony będą należeć do zielenic (Chlorophyta) lub do linii, z której wyodrębniły się ramienicowate i w końcu rośliny lądowe (telomowe). Niestety, nowe algi nie pasowały do żadnego kladu - zespołu organizmów mających wspólnego przodka – co sugerowało, że reprezentują bardzo starą grupę zielonych roślin. Wg Zechmana, ze względu na odmienność glony powinno się zaliczyć do ich własnego rzędu Palmophyllales.
Naukowcy sądzą, że prehistoryczne algi, stanowiące roślinny odpowiednik innych żywych skamieniałości krokodyli, zawdzięczają swój sukces zamieszkiwanemu środowisku. Na tak dużych głębokościach temperatura zmienia się w bardziej ograniczonym zakresie, o mniejszym stresie związanym z działaniem fal czy roślinożercami nie wspominając.
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.