Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Naukowcy z Children's Hospital of Philadelphia wykorzystali pola magnetyczne, aby dostarczyć zawierające żelazo nanocząsteczki do metalowych stentów w uszkodzonych naczyniach krwionośnych. Cząsteczki zawierały lekarstwa zapobiegające blokowaniu naczyń krwionośnych. Badania na zwierzętach wykazały, że metoda taka jest bardziej skuteczna niż standardowo wykorzystywane terapie.

Robert J. Levy, główny autor badań, stwierdził, że nowa metoda może stać się główną techniką dostarczania leków i innych materiałów do określonych miejsc w organizmie. Ma ona bowiem tę zaletę, w porównaniu z tradycyjnymi sposobami, że pozwala na dostarczenie wyższych dawek leku, wielokrotne ich transportowanie oraz umożliwia przesłanie różnych leków i innych substancji do jednego stentu.

Laboratorium Levy'ego wyprodukowało nanocząsteczki o średnicy 290 nanometrów. Były one zbudowane z biodegradowalnego polimeru pokrytego magnetytem.

Najpierw w arteriach szczurów umieszczono stalowe stenty, a następnie dostarczono do nich nanocząsteczki z lekiem o nazwie paklitaksel. Następnie zwierzęta poddano działaniu pola magnetycznego przez pięć minut. Było ono 10-krotnie słabsze niż pole generowane przez urządzenia do rezonansu magnetycznego. Dzięki niemu nanocząsteczki przedostały się wgłąb stentu i do okolicznych tkanek.

Grupie kontrolnej dostarczono nanocząsteczki w sposób tradycyjny.

Po pięciu dniach zbadano obie grupy zwierząt i okazało się, że grupa, na której użyto pola magnetycznego, miała w okolicznych tkankach od 4 do 10 razy więcej nanocząsteczek. Ponadto po 14 dniach od podania pojedynczej dawki paklitakselu w nanocząsteczkach, u zwierząt poddawanych działaniu pola magnetycznego zauważono znacząco mniej przypadków ponownego zwężenia arterii.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      "Chorujący na choroby kaduczne, piją krew szermierzy (zabitych) z żywych niejako pucharów [...] owi mniemają, że jest bardzo skutecznie pić ciepłą i kurzącą się jeszcze krew, i całowaniem ran, duszę samę w siebie wciągać [...] Inni szukają szpiku kości udowych i mózgu dzieci. Nie mała liczba Greków opisała nawet smak pojedynczych wnętrzności i członków [...] są jeszcze rozprawy Demokryta, w których on mówi, że kości z głowy człowieka obcego pomagają więcej w jednej chorobie, w drugiej z głowy przyjaciela i gościa. Co więcej, Apolloniusz pisze, że na bóle zębów najskuteczniejszym jest środkiem, pożgać dziąsła zębem zamordowanego człowieka; Miletus, że krwią zawrzałe oczy leczą się żółcią ludzką. Artemon przepisywał w chorobach kaducznych, pić w nocy wodę zrzódelną czaszką zabitego, nie spalonego człowieka. Anteusz robił pigułki z czaszki obwieszonego człowieka, przeciw ukąszeniu psa wściekłego. Także czworonożne zwierzęta leczono ludźmi; przeciw wzdęciom przewiercają im rogi i wtykają w nie kości ludzkie; świniom dawano w chorobach zboże sibigo, które przez noc stało w miejscu, gdzie człowiek był zabitym, albo spalonym".
      Te "choroby kaduczne" to epilepsja, a cytowany powyżej fragment jest XIX-wiecznym (nowszego nie znaleźliśmy) tłumaczeniem II rozdziału XVIII księgi „Historii naturalnej” Pliniusza Starszego. Dość łatwo możemy sobie to wyobrazić... chorujący na epilepsję wchodzi na arenę i pije krew wypływającą z rany umierającego gladiatora.
      Wykorzystanie ludzkiego ciała jako lekarstwa jest jednak znacznie starsze niż dzieło Pliniusza. Zauważmy, że powołuje się on na poprzedzających go autorów greckich. I zwyczaj ten przetrwał przez wieki. Na przykład w XVI wieku niemieccy robotnicy pracujący w Mennicy Królewskiej w Londynie nagle zachorowali. Niewykluczone, że przyczyną były opary miedzi. Jednak wedle wierzeń ludowych (popatrzmy to, co Pliniusz pisze o zaleceniach Artemona) picie z ludzkiej czaszki miało mieć efekt terapeutyczny. Skąd jednak wziąć czaszki? Wykorzystano ciała składowane pod Tower Bridge. W specjalnym pomieszczeniu – służącym identyfikacji zmarłych – gromadzono tam zwłoki wyłowione z Tamizy oraz zwłoki skazańców poddanych egzekucji w Tower. Od zwłok odcięto głowy, wygotowano je, a czaszki posłużyły jako naczynia do picia dla chorych robotników. Jak się można było spodziewać, część z nich wyzdrowiała, a część zmarła.
      Z przekazów anonimowego angielskiego autora wiemy, że w 1741 roku we Florencji rozprowadzano krew dopiero co powieszonego mężczyzny, który trafił na szubienicę za zabicie żony. Krew pili epileptycy i ci, którzy obawiali się nagłej śmierci.
      W 1685 roku lekarze przepisali umierającemu Karolowi II, królowi Anglii, krople wykonane z użyciem czaszki, zachęcano go też do picia alkoholu z ludzkiej czaszki. Nie pomogło. Dziesięć lat później podobną kurację, tym razem mającą uśmierzyć ból, zalecono umierającej Marii II.
      W wydanej w 1720 roku Pharmacopoeia Londonensis (oryginalne wydanie pochodzi z 1618 roku) znajdziemy zalecenia dla aptekarzy, wydane przez londyński Colledge of Physicians. Dowiadujemy się, jakie ingrediencje powinny znajdować się w aptece. Otóż obok tłuszczu kota, kości zająca, masła solonego i niesolonego czy mózgu wróbla, apteka powinna posiadać na stanie „czaszkę człowieka zabitego gwałtowną śmiercią".
      Leczenie fragmentami ludzkiego ciała przetrwało w europejskiej medycynie ludowej co najmniej do początków XX wieku. Istnieją bowiem doniesienia z 1909 roku ze Szkocji, gdzie cierpiącemu na epilepsję chłopcu, któremu nie pomogło konwencjonalne leczenie, uzdrowiciel zalecił picie z ludzkiej czaszki.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przez ostatnich 540 milionów lat zmiany w sile pola magnetycznego Ziemi były skorelowane z poziomem atmosferycznego tlenu, donosi amerykańsko-brytyjski zespół naukowy. Wyniki badań sugerują, że procesy zachodzące głęboko wewnątrz naszej planety mogły mieć wpływ na organizmy żywe na powierzchni Ziemi. O swoim odkryciu uczeni poinformowali na łamach Science Advances.
      Historia ziemskiego magnetyzmu zapisana jest w skałach. Gdy rozgrzane minerały znajdujące się magmie stygną, mogą zapisać stan lokalnego pola magnetycznego. I zapis ten pozostanie w nich dopóty, dopóki nie zostaną ponownie silnie rozgrzane. Również ze skał i minerałów można odczytać poziom tlenu w atmosferze, gdyż ich skład chemiczny zależy od ilości tlenu w czasie, gdy się tworzyły. I jeden, i drugi zapis jest od dawna używany w nauce, informacje takie można znaleźć w olbrzymiej liczbę baz danych utworzonych na potrzeby badań geofizycznych i geochemicznych. Jednak, jak twierdzą autorzy nowych badań, dotychczas nikt nie wpadł na pomysł, by dokładnie porównać ze sobą oba zapisy.
      Zadania takiego podjęli się Weijia Kuang i Ravi Kopparapu z NASA Goddard Space Flight Center, Joshua Krissansen-Totton z University of Washington oraz Benjamin J. W. Mills z University of Leeds. Te dwa zestawy danych są bardzo podobne. Ziemia to jedyna znana nam planeta, która podtrzymuje złożone formy życia. Korelacja, którą znaleźliśmy, pozwoli nam lepiej zrozumieć ewolucję oraz jak jest ona powiązana z procesami zachodzącymi wewnątrz planety, mówi Weijia Kiang.
      Uczeni prześledzili zmiany siły pola magnetycznego i poziomu tlenu w atmosferze aż do czasów eksplozji kambryjskiej, w czasie której nagle pojawiło się wiele złożonych form życia. Istnienie korelacji pomiędzy siłą pola magnetycznego, a poziomem tlenu sugeruje, że oba te zjawiska mogą być reakcją na ten sam proces, na przykład na ruch kontynentów, uważa Benjamin Mills.
      Naukowcy mają nadzieję, że uda im się prześledzić jeszcze dłuższy okres historii Ziemi. Chcą sprawdzić, czy znaleziona korelacja się utrzyma. Planują też poddać analizie inne pierwiastki niezbędne do istnienia życia, by przekonać się, czy i w ich przypadku widać taki sam schemat.
      Źródło: Strong link between Earth’s oxygen level and geomagnetic dipole revealed since the last 540 million years, https://www.science.org/doi/10.1126/sciadv.adu8826

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Po dziesięcioleciach udało się odkryć ambipolarne (dwukierunkowe) pole elektryczne Ziemi. To słabe pole elektryczne naszej planety, które jest tak podstawową jej cechą jak grawitacja czy pola magnetyczne. Hipoteza o istnieniu takiego pola pojawiła się ponad 60 lat temu i od tamtego czasu poszukiwano tego pola. Jest ono kluczowym mechanizmem napędzającym „wiatr polarny”, czyli ucieczkę naładowanych cząstek z ziemskiej atmosfery w przestrzeń kosmiczną. Ma ona miejsce nad ziemskimi biegunami.
      „Wiatr polarny” został odkryty w latach 60. XX wieku. Od samego początku naukowcy uważali, że jego siłą napędową jest nieznane pole elektryczne. Uważano, że jest ono generowane w skali subatomowej i jest niezwykle słabe. Przez kolejnych kilkadziesiąt lat ludzkość nie dysponowała narzędziami, które mogły zarejestrować takie pole.
      W 2016 roku Glyn Collinson i jego zespół z Goddars Space Flight Center zaczęli pracować nad instrumentami zdolnymi do zmierzenia ambipolarnego pola elektrycznego. Stworzone przez nich urządzenia oraz metoda pomiaru zakładały przeprowadzenie badań za pomocą rakiety suborbitalnej wystrzelonej z Arktyki. Badacze nazwali swoją misję Endurance, na cześć statku, którym Ernest Shackleton popłynął w 1914 roku na swoją słynną wyprawę na Antarktykę. Rakietę postanowiono wystrzelić ze Svalbardu, gdzie znajduje się najbardziej na północ wysunięty kosmodrom. Svalbard to jedyny kosmodrom na świecie, z którego można wystartować, by przelecieć przez wiatr polarny i dokonać koniecznych pomiarów, mówi współautorka badań, Suzie Imber z University of Leicester.
      Misja Endurance została wystrzelona 11 maja 2022 roku. Rakieta osiągnęła wysokość 768,03 km i 19 minut później spadła do Morza Grenlandzkiego. Urządzenia pokładowe zbierały dane przez 518 kilometrów nabierania wysokości i zanotowały w tej przestrzeni zmianę potencjału elektrycznego o 0,55 wolta. Pół wolta to tyle co nic, to napięcie baterii w zegarku. Ale to dokładnie tyle, ile trzeba do napędzenia wiatru polarnego, wyjaśnia Collinson.
      Generowane pole elektryczne oddziałuje na jony wodoru, które dominują w wietrze polarnym, z siłą 10,6-krotnie większą niż grawitacja. To więcej niż trzeba, by pokonać grawitację. To wystarczająco dużo, by wystrzelić jony z prędkością naddźwiękową prosto w przestrzeń kosmiczną, dodaje Alex Glocer z NASA. Pole napędza też cięższe pierwiastki, jak jony tlenu. Z badań wynika, że dzięki obecności tego pola elektrycznego jonosfera jest na dużej wysokości o 271% bardziej gęsta, niż byłaby bez niego. Mamy tutaj rodzaj taśmociągu, podnoszącego atmosferę do góry, dodaje Collinson.
      Pole to nazwano ambipolarnym (dwukierunkowym), gdyż działa w obie strony. Opadające pod wpływem grawitacji jony ciągną elektrony w dół, a w tym samym czasie elektrony – próbując uciec w przestrzeń kosmiczną – ciągną jony w górę. Wskutek tego wysokość atmosfery zwiększa się, a część jonów trafia na wystarczającą wysokość, by uciec w przestrzen kosmiczną w postaci wiatru polarnego.
      Odkrycie ambipolarnego pola elektrycznego otwiera przed nauką nowe pola badawcze. Jest ono bowiem, obok grawitacji i pola magnetycznego, podstawowym polem energetycznym otaczającym naszą planetę, wciąż wpływa na ewolucję naszej atmosfery w sposób, który dopiero teraz możemy badać. Co więcej, każda planeta posiadająca atmosferę powinna mieć też ambipolarne pole elektryczne. Można więc będzie go szukać i badać na Marsie czy Wenus.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Gdy boli nas głowa i bierzemy środek przeciwbólowy, raczej nie myślimy o pozycji ciała podczas jego zażywania. Tymczasem naukowcy z Uniwersytetu Johnsa Hopkinsa informują, że pozycja ciała podczas przyjmowania leków może zdecydować, jak szybko lek zostanie wchłonięty, a niewłaściwa pozycja może opóźnić ten moment nawet o godzinę.
      Amerykanie stworzyli model symulujący procesy mechaniczne zachodzące w żołądku podczas przyjmowania leków. Model ten, który bierze pod uwagę sposób rozpuszczania się leku oraz anatomię żołądka wykazał, że położenie się na prawym boku w czasie połykania tabletki skraca czas jej wchłonięcia.
      Byliśmy bardzo zaskoczeni faktem, że postawa ma tak duży wpływ na rozpuszczanie się pigułki w żołądku. Nigdy nie myślałem o tym, czy przyjmuję leki w sposób właściwy czy nie. Teraz z pewnością będę się nad tym zastanawiał, mówi główny autor badań, inżynier i ekspert w dziedzinie dynamiki cieczy Rajat Mittal.
      Większość przyjmowanych doustnie leków zaczyna działać dopiero wtedy, gdy zawartość żołądka przesunie się do jelit. Zatem im bliżej odźwiernika – który łączy żołądek z dwunastnicą – znajdzie się pigułka, tym szybciej zacznie działać.
      Naukowcy z Johnsa Hopkinsa wykorzystali model żołądka do przetestowania wpływu czterech pozycji ciała na umiejscowienie leku w żołądku. Okazało się, że gdy położymy się na prawym boku lek trafi najbliżej odźwiernika i rozpuści się 2,3 raza szybciej, niż wówczas, gdy przyjmujemy go na stojąco w postawie wyprostowanej. Najgorszą zaś postawą jest położenie się na lewym boku. O ile tabletka przyjęta podczas leżenia na prawym boku rozpuszcza się w żołądku średnio w ciągu 10 minut, a przyjęta na stojąco w ciągu 23 minut, to gdy leżymy na lewym boku mija ponad 100 minut, zanim lek się rozpuści. Dla osób starszych czy przykutych do łóżka, obrócenie się na lewą lub prawą stronę może zrobić wielką różnicę, mówi Mittal. Drugą, po leżeniu na prawym boku, najlepszą postawą była wyprostowana stojąca, równie efektywne było leżenie na plecach.
      Naukowcy stwierdzili również, że wszelkie schorzenia żołądka mają równie wielki wpływ na wchłanianie leku, co postawa. A to jeszcze bardziej pokazuje, jak ważne jest przyjęcie odpowiedniej postawy. Osoby z chorobami żołądka mogą znacząco skrócić czas rozpuszczania się leku przyjmując odpowiednią postawę.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Intensywność pola magnetycznego Ziemi zmniejsza się od około 200 lat. Proces ten przebiega na tyle szybko, że niektórzy naukowcy ogłosili, iż w ciągu 2000 lat dojdzie do zamiany biegunów magnetycznych. Przebiegunowanie mogłoby spowodować, że przez kilka tysięcy lat Ziemia byłaby gorzej chroniona przed szkodliwym promieniowaniem kosmicznym i słonecznym. To z kolei doprowadziłoby do poważnych zakłóceń i awarii sprzętu elektronicznego, wzrostu przypadków zachorowań na nowotwory i zwiększenia się liczby mutacji genetycznych. Niewykluczone, że ucierpiałyby też te gatunki zwierząt, które w swoich migracjach orientują się wedle pola magnetycznego.
      Naukowcy z MIT-u opublikowali na łamach PNAS artykuł opisujący wyniki ich badań nad stanem pola magnetycznego planety. Ich zdaniem przebiegunowanie nie grozi nam w najbliższym czasie. Uczeni obliczyli średnią intensywność stabilnego ziemskiego pola magnetycznego na przestrzeni ostatnich 5 milionów lat i odkryli, że obecnie pole to jest dwukrotnie bardziej intensywne niż średnia z tego okresu. To oznacza, że minie jeszcze sporo czasu, zanim pole magnetyczne planety stanie się niestabilne i dojdzie do przebiegunowania. To olbrzymia różnica, czy dzisiejsze pole magnetyczne jest takie jak średnia długoterminowa czy też jest powyżej średniej. Teraz wiemy, że nawet jeśli intensywność pola magnetycznego Ziemi się zmniejsza to jeszcze przez długi czas będzie się ono znajdowało w bezpiecznym zakresie - mówi Huapei Wang, główny autor badań.
      Z innych badań wiemy, że w przeszłości wielokrotnie dochodziło do przebiegunowania naszej planety. Jest to jednak proces bardzo nieregularny. Czasami przez 40 milionów lat nie było przebiegunowania, a czasem bieguny zmieniały się 10-krotnie w ciągu miliona lat. Średni czas pomiędzy przebiegunowaniami wynosi kilkaset tysięcy lat. Ostatnie przebiegunowanie miało miejsce około 780 000 lat temu, zatem średnia już została przekroczona - dodaje Wang.
      Sygnałem nadchodzącego przebiegunowania jest znaczący spadek poniżej średniej długoterminowej intensywności pola magnetycznego. To wskazuje, że stanie się ono niestabilne. Zarówno z badań terenowych jak i satelitarnych mamy dobre dane dotyczące ostatnich 200 lat. Mówiąc o przeszłości musimy opierać się na mniej pewnych szacunkach.
      Grupa Wanga zdobywała informacje o przeszłości ziemskiego pola magnetycznego badając skały wyrzucone przez wulkany na Galapagos. To idealne miejsce, gdyż wyspy położone są na równiku. Stabilne pole magnetyczne jest dipolem, jego intensywność powinna być taka sama na obu biegunach, a na równiku powinna być o połowę mniejsza. Wang stwierdził, że jeśli pozna historyczną intensywność pola magnetycznego na równiku i na biegunach uzyska dokładne dane na temat średniej historycznej intensywności. Sam zdobył próbki z Galapagos, a próbki z Antarktyki dostarczyli mu naukowcy ze Scripps Institution of Oceanography. Naukowcy najpierw zmierzyli naturalny magnetyzm skał. Następnie podgrzali je i ochłodzili w obecności pola magnetycznego i zmierzyli ich magnetyzm po ochłodzeniu. Naturalny magnetyzm skał jest proporcjonalny do pola magnetycznego, w którym stygły. Dzięki eksperymentom naukowcy byli w stanie obliczyć średnią historyczną intensywność pola magnetycznego. Wynosiła ona około 15 mikrotesli na równiku i 30 mikrotesli na biegunach. Dzisiejsza intensywność wynosi zaś, odpowiednio, 30 i 60 mikrotesli. To oznacza, że dzisiejsza intensywność jest nienormalnie wysoka i jeśli nawet ona spadnie, to będzie to spadek do długoterminowej średniej, a nie ze średniej do zera, stwierdza Wang.
      Uczony uważa, że naukowcy, którzy postulowali nadchodzące przebiegunowanie opierali się na wadliwych danych. Pochodziły one z różnych szerokości geograficznych, ale nie z równika. Dopiero Wang wziął pod uwagę dane z równika. Ponadto odkrył, że w przeszłości źle rozumiano sposób, w jaki w skałach pozostaje zapisana informacja o ziemskim magnetyzmie. Z tego też powodu przyjęto błędne założenie. Uznano, że gdy poszczególne ferromagnetyczne ziarna w skałach ulegały schłodzeniu spiny elektronów przyjmowały tę samą orientację, z której można było odczytać intensywność pola magnetycznego. Teraz wiemy, że jest to prawdą ale tylko do pewnej ograniczonej wielkości ziaren. Gdy są one większe spiny elektronów w różnych częściach ziarna przyjmują różną orientację. Wang opracował więc metodę korekty tego zjawiska i zastosował ją przy badaniach skał z Galapagos.
      Wang przyznaje, że nie wie, kiedy dojdzie do kolejnego przebiegunowania. Jeśli założymy, że utrzyma się obecny spadek, to za 1000 lat intensywność pola magnetycznego będzie odpowiadała średniej długoterminowej. Wówczas może zacząć się zwiększać. Tak naprawdę nie istnieje sposób, by przewidzieć, co się stanie. Proces magnetohydrodynamiczny ma bowiem chaotyczną naturę".

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...