Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'szum' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 8 wyników

  1. Magnetorecepcja pozwala na wykrywanie kierunku linii pola magnetycznego Ziemi. Dzięki temu zwierzęta wędrowne, np. migrujące pomiędzy Skandynawią a Afryką rudziki, orientują się w przestrzeni. Kiedyś uważano, że za zdolnością tą kryją się reakcje chemiczne zachodzące w oku. Teraz naukowcy z Uniwersytetu w Oksfordzie skłaniają się raczej ku temu, że ptasi kompas bazuje na tzw. koherencji (spójności) kwantowej. W najbliższym numerze Physical Review Letters ukaże się artykuł dotyczący brytyjsko-niemieckiego eksperymentu na rudzikach. Akademicy zademonstrowali, że działanie kompasu ptaków można zaburzyć za pomocą niewielkiego szumu magnetycznego. Kiedy wprowadzano taki szum w postaci słabego zmiennego pola magnetycznego, rudziki stawały się bezradne. Wszystko wracało do normy po jego wyeliminowaniu. W swojej analizie naukowcy wykazali, że tylko system z komponentami pracującymi na poziomie kwantowym byłby tak wrażliwy na delikatny szum. Postęp w dziedzinie kwantowych technologii informacyjnych jest wyjątkowo trudny, ponieważ trzeba zdobyć [wiedzę i] panowanie nad bardzo delikatnymi zjawiskami. To prawie niewyobrażalne, że żywy organizm wytworzył w toku ewolucji podobne zdolności – zachwyca się Erik Gauger z Wydziału Materiałoznawstwa Uniwersytetu Oksfordzkiego. Stany koherencji kwantowej błyskawicznie zanikają, dlatego wyzwaniem jest ich podtrzymanie tak długo, jak to tylko możliwe. Struktury molekularne ptasiego kompasu ewidentnie utrzymują je przez co najmniej 100 mikrosekund, a prawdopodobnie jeszcze dłużej. Choć wydaje się, że to krótko, najlepiej nadające się do porównań sztuczne cząstki pozwalają na osiągnięcie 80 mikrosekund w temperaturze pokojowej. I to w idealnych warunkach laboratoryjnych – podsumowuje współautor artykułu Simon Benjamin z Singapuru. Panowie mają nadzieję, że dogłębniejsze zbadanie metod ptaków na podtrzymywanie stanów koherencji kwantowej pozwoli je odtworzyć i tym samym opracować praktyczne technologie kwantowe.
  2. Szwedzka firma NocturnalVision chce rozwiązać problem szumu pojawiającego się na fotografiach i filmach wykonywanych w złych warunkach oświetleniowych. Do pomocy zaprzęgnięto prowadzącą nocny tryb życia pszczołę z rodzaju Megalopta genalis. Współczesne aparaty i kamery potrafią rozjaśnić obraz, jednak, dodając informacje w celu jego poprawienia, dodają też informacje na temat szumów, które stają się bardziej wyraźne. Zastosowanie wspomnianej technologii wymaga sporych mocy obliczeniowych, dlatego też na dobrej jakości ujęcie należy czekać do momentu wykonania szóstego zdjęcia. W tej chwili możliwe jest wykonywanie dobrej jakość ujęć w rozdzielczości 640x400 z prędkością 5 klatek na sekundę. Niewykluczone jednak, że już wkrótce dzięki poprawieniu algorytmu i rosnących możliwościach sprzętu, kamery będą w stanie pracować w ciemności ze zwykłą prędkością 30 klatek na sekundę.
  3. Naukowcy pracujący z hanowerskim wykrywaczem fal grawitacyjnych GEO 600 od wielu miesięcy zastanawiali się nad dziwnym szumem, rejestrowanym przez ich urządzenie. Teraz Craig Hogan, fizyk z Fermilab, zaproponował teorię, która może oznaczać, iż GEO 600 dokonał najważniejszego odkrycia w fizyce w ciągu ostatnich 50 lat. Hogan, który niedawno został dyrektorem Centrum Astrofizyki Cząstek, uważa, że szum pochodzi z granicy czasoprzestrzeni, z miejsca w którym czas i przestrzeń przestają być kontinuum. Poza tym punktem czas i przestrzeń tworzą jakby liczne osobne ziarna, zamiast gładkiej wstęgi. Jeśli wyniki uzyskane przez GEO 600 są tym, co podejrzewam, to wszyscy żyjemy w wielkim kosmicznym hologramie - mówi Hogan. Teoria hologramu dobrze tłumaczy niektóre paradoksy związane z czarnymi dziurami czy podstawowymi pojęciami dotyczącymi budowy Wszechświata. Jednak niektórzy naukowcy proponują jej rozszerzenie na całą rzeczywistość. Już w latach 90. ubiegłego wieku fizycy Leonard Susskind i noblista Gerard Hooft zasugerowali taką właśnie możliwość. Jednak jej przyjęcie oznaczałoby, że zgadzamy się z koncepcją, iż całe nasze codzienne doświadczenie to nic innego jak holograficzne odbicie fizycznego procesu zachodzącego w odległej dwuwymiarowej przestrzeni. Skąd jednak Susskind i Hooft wzięli swój pomysł? Pochodził on od samego Stephena Hawkinga. W połowie lat 70. Hawking teoretycznie przewidział, że czarne dziury parują i z czasem zanikają. To parowanie to tzw. promieniowanie Hawkinga. Problem jednak w tym, że promieniowanie to nie zawiera żadnych informacji o czarnej dziurze, a więc gdy ona wyparuje, wszystkie dane dotyczące gwiazdy, z której czarna dziura powstała, są tracone. To z kolei było sprzeczne z szeroko przyjętym poglądem, że informacja nie może zostać zniszczona. Mówimy tutaj o paradoksie informacyjnym czarnej dziury. Jacob Bekenstein z Uniwersytetu Hebrajskiego zaproponował następnie rozwiązanie paradoksu. Miało ono polegać na tym, że entropia czarnej dziury, która jest synonimem informacji, którą dziura zawiera, jest proporcjonalna do powierzchni jej horyzontu zdarzeń. Horyzont zdarzeń, to teoretyczny punkt, poza którym nie ma już powrotu i wszystko co go przekroczy, jest wchłaniane przez czarną dziurę. Na podstawie teorii Hawkinga i Bekensteina, teoretycy stwierdzili, że mikroskopijne fale kwantowe na horyzoncie zdarzeń mogą kodować informacje pochodzące z czarnej dziury. Oznacza to, że informacja 3D o gwieździe, z której powstała czarna dziura może zostać zakodowana w dwuwymiarowym horyzoncie zdarzeń czarnej dziury. Susskind i Hooft rozszerzyli to na cały wszechświat. Stwierdzili bowiem, że ma on również swój horyzont zdarzeń - jest nim miejsce, do którego zdążył się rozszerzyć w ciągu swojego istnienia. Kilku naukowców zajmujących się teorią strun zgadza się z takim poglądem. Teoria holograficzna jest bardzo pociągająca dla naukowców badających czas i przestrzeń. Teoretycy od dawna przewidują, że w najmniejszej skali dochodzi do zaburzeń czasoprzestrzeni i staje się ona "ziarnista", a nie ciągła. Jednak mowa tutaj o skali równej długości Plancka, czyli 10-35 metra. To setki miliardów miliardów razy mniej niż wynosi wielkość protonu. Innymi słowy, jest to wielkość, której nie jesteśmy w stanie zaobserwować. Jednak teoria holograficzna to zmienia. Hogan zdał sobie bowiem sprawę z tego, że jeśli wszechświat jest hologramem, to mamy do czynienia z czasoprzestrzenną sferą, której powierzchnia nie jest ciągła, a ziarnista. Każde z "ziaren" ma wielkość równą długości Plancka i zawiera bit informacji. Jednak, z teorii holograficznej wynika, że ilość informacji zawartej w "ziarnach" na powierzchni musi być równa ilości informacji zawartej w samej sferze. A przecież wnętrze sfery jest znacznie bardziej pojemne, niż jej powierzchnia. Ilość informacji, która zmieści się w obu częściach nie może być więc równa. Hogan ma jednak pomysł na rozwiązanie tego problemu. Uważa on, że ilość informacji może być równa jedynie wówczas, gdy "ziarna" tworzące wszechświat są znacznie większe niż długość Plancka. Zdaniem Hogana, ta najmniejsza skala, w której dochodzi do zaburzeń czasoprzestrzeni to nie 10-35 metra, a 10-16. "Ziarna" tworzące nasz wszechświat są zatem większe, niż sądzimy i, co najważniejsze, jest to wielkość dostępna dla współczesnych instrumentów badawczych. Amerykański uczony wiedział, że spośród pięciu istniejących wykrywaczy fal grawitacyjnych, to właśnie GEO 600 może być na tyle czuły, by potwierdzić jego teorię. Skontaktował się więc z zespołem naukowców pracujących z GEO 600 i przedstawił im swoje przewidywania. Otrzymał stamtąd odpowiedź, że urządzenie wykrywa szum o częstotliwości 300-1500 Hz. Jego pochodzenia uczeni nie potrafią wyjaśnić. Właściwości tego szumu były dokładnie takie, jak przewidywał Hogan w swojej teorii. Na razie jednak uczeni powstrzymują się pod formułowaniem ostatecznych ocen. Sam Hogan mówi, że może przecież istnieć inne źródło szumu, niż to zgodne z jego teorią. Wykrywacze fal grawitacyjnych są tak czułe, że istnieje wiele źródeł zakłóceń - przepływające chmury, odległy ruch drogowy, ruchy sejsmiczne itp. Na razie naukowcy nie potrafią wytłumaczyć pewnego szczególnego szumu, który pojawia się w GEO 600. Uczeni planują dalsze udoskonalanie instrumentu i kolejne eksperymenty, które, jak mają nadzieję, pozwoli wyeliminować większość tajemniczego szumu. Jeśli jednak nadal będzie się on pojawiał tam, gdzie obecnie, teoria Hogana stanie się jeszcze bardziej prawdopodobna. Co prawda szum powstający z zaburzeń czasoprzestrzeni może ostatecznie uniemożliwić wykrycie fal grawitacyjnych, ale samo jego odkrycie będzie znacznie ważniejsze niż odkrycie fal, których szuka GEO 600.
  4. Dwie uczennice jednego z irlandzkich koledżów odkryły skuteczny sposób na zwalczenie tymczasowego dzwonienia lub szumu w uszach (tinnitus), powstającego np. po przebywaniu w miejscach o wysokim natężeniu hałasu. Jeżeli dalsze testy potwierdzą skuteczność nowej metody, może się ona okazać przełomem, z którego osiągnięciem nauka nie mogła poradzić sobie od wielu lat. Eimear O’Carroll i Rhona Togher, uczennice Koledżu Urszulanek w hrabstwie Sligo, opracowały nową terapię wspólnie z nauczycielem fizyki, Anthonym Carolanem. Ich pomysł na walkę z szumem w uszach został nagrodzony podczas wystawy tegorocznej BT Young Scientist and Technology Exhibition. Opracowana metoda walki z tinnitus polega na zastosowaniu łagodnych dźwięków o niskiej częstotliwości. Jak uważają autorzy, słuchanie nagrania z odpowiednio dobranymi tonami pozwala na przywrócenie równowagi i prawidłowej akcji neuronów odpowiedzialnych za słyszenie. Zgodnie z aktualną wiedzą, właśnie zaburzenie funkcji tych komórek jest przyczyną powstawania nierzeczywistych wrażeń dźwiękowych objawiających się właśnie jako szum lub dzwonienie. Skuteczność leczenia dźwiękiem przetestowano na 250 osobach cierpiących na tymczasową formę tinnitus, rozwijającą się najczęściej w wyniku ekspozycji na hałas. Jak twierdzą młode badaczki, terapia trwa zaledwie minutę, lecz wystarcza to, by osiągnąć 99-procentową skuteczność. Dane te bez wątpienia wymagają jednak weryfikacji przez niezależnych badaczy. Chętni do przetestowania innowacyjnej terapii mogą to uczynić za pośrednictwem strony http://www.restoredhearing.ie/ . Niestety, pobranie leczniczych dźwięków jest płatne.
  5. Naukowcy pracujący dla firmy Philips opracowali detektory promieniowania gamma niemal całkowicie niewrażliwe na działanie fal radiowych. To ważny krok na drodze do stworzenia aparatu łączącego funkcje obrazowania z wykorzystaniem pozytonowej tomografii emisyjnej (PET) oraz rezonansu magnetycznego (MRI). Pomimo ogromnej liczby zalet, PET posiada jedna zasadniczą wadę: nie może być stosowany samodzielnie. Metoda ta, polegająca na pomiarze tempa pochłaniania substancji radioaktywnej (najczęściej jest nią zmodyfikowana forma glukozy) przez różne tkanki, pokazuje bowiem wyłącznie przestrzenny rozkład miejsc, z których do aparatu dociera promieniowanie. W konsekwencji konieczne jest jednoczesne wykonanie drugiego badania, które pozwoli na nałożenie obrazu PET na mapę ciała pacjenta. Aktualny stan wiedzy i technologii sprawia, że jedynym badaniem łączonym z PET jest tomografia komputerowa, czyli tworzenie trójwymiarowych obrazów ciała na podstawie serii zdjęć rentgenowskich. Technika ta nie nadaje się jednak do obserwacji niektórych organów, takich jak choćby mózg. Właśnie dlatego trwają prace nad sprzężeniem PET z MRI - metodą, która pozwala na rozróżnienie tkanek na podstawie ich unikalnej reakcji na promieniowanie w zakresie fal radiowych. Główną trudnością związaną z połączeniem aparatów do MRI i PET jest budowa detektorów promieniowania używanych w PET. Aby prawidłowo funkcjonować, muszą one bowiem wykrywać pojedyncze fotony promieniowania gamma (to ono powstaje podczas rozpadu izotopu zawartego w zmodyfikowanej glukozie), lecz silne fale radiowe wytwarzane przez cewki wykorzystywane w MRI poważnie zakłócają ich pracę. Rozwiązaniem problemu okazało się stworzenie krzemowych płytek wzmacniających promieniowanie padające na detektory. Każdy z tych miniaturowych układów został wzbogacony o elektroniczny moduł analizujący z wyjątkową precyzją nie tylko liczbę wychwyconych fotonów, lecz także kierunek, z którego dotarły one do urządzenia. Poprawie uległa także precyzja pomiaru czasu pomiędzy kolejnymi uderzeniami fotonów. Jest to niezwykle ważne, ponieważ podczas rozpadu izotopu dochodzi do powstania pary fotonów podróżujących w niemal idealnie przeciwnych kierunkach. Im dokładniej uda się więc ustalić moment spotkania fotonów z dwoma położonymi przeciwnie względem siebie detektorami, tym większe jest prawdopodobieństwo, że wykryje się rozpad promieniotwórczy, a nie przypadkowe sygnały, których w przypadku równoczesnego działania aparatu do MRI powstaje wyjątkowo wiele. Opracowanie nowej generacji detektorów PET jest ogromnym krokiem naprzód w dziedzinie tzw. medycyny nuklearnej. Nie ma wątpliwości, że przedstawiciele Philipsa będą chcieli jak najszybciej wprowadzić hybrydę PET-MRI na rynek. Z pewnością nie będzie ona urządzeniem tanim, lecz w wielu przypadkach dopłata za poprawę jakości badania będzie bardzo opłacalną inwestycją.
  6. Nasz mózg zdobywa dane potrzebne do zidentyfikowania twarzy głównie z oczu. Na drugim miejscu pod względem informacyjności uplasowały się nos i usta (PLoS Computational Biology). Badacze z Uniwersytetu Barcelońskiego ustalili to, analizując 868 męskich i tyle samo kobiecych fizjonomii w taki sposób, jak robi to mózg. Chociaż wydawałoby się, że ważny jest każdy szczegół, wiele badań wykazało, że bez względu na odległość dzielącą go od zdjęcia, zamiast wyostrzonego mózg woli obraz o gorszej rozdzielczości ("ziarnisty"). Dopiero studium Hiszpanów wyjaśniło, czemu się tak dzieje. Najbardziej użyteczne informacje o twarzy uzyskujemy ze zdjęć, na których rozmiar oczu wynosi mniej więcej 30 na 30 pikseli. Mechanizmy rozpoznawania fizjonomii wyspecjalizowały się w oczach, ponieważ w porównaniu do nosa i ust, zapewniają one najmniej szumu informacyjnego.
  7. Przypadkowa aktywność w obrębie mózgu, która nie ma znaczenia dla funkcjonowania i często bywa uznawana za szum, jest wskaźnikiem dobrej kondycji zdrowotnej tego organu (PLoS - Computational Biology). Naukowcy z Rotman Research Institute w Baycrest podkreślają, że ich odkrycia obalają twierdzenie, że w okresie dojrzewania dziecięcy mózg się wycisza, przez co staje się bardziej wydajny i konsekwentny podczas procesów przetwarzania danych. Zauważyliśmy, że dojrzewanie mózgu prowadzi nie tylko do stabilniejszego i bardziej odpowiedniego zachowania w przypadku zadań pamięciowych, ale koreluje również ze zwiększoną zmiennością sygnałów - przekonuje szef zespołu badawczego, dr Randy McIntosh. Wbrew oczekiwaniom, nie oznacza to, że mózg pracuje mniej wydajnie. Wykazuje po prostu większą zmienność funkcjonalną, co stanowi odbicie złożoności neuronalnej. Kanadyjskie studium objęło 79 osób: dzieci w wieku do 15 lat i młodych dorosłych w wieku 20-33 lat. Wszyscy ochotnicy wzięli udział w teście zapamiętywania i rozpoznawania twarzy. W czasie wykonywania zadań byli podpięci do elektroencefalografu. Okazało się, że młodzi dorośli wypadli lepiej od dzieci. Ponadto w mózgu 20-33-latków wzrosła zmienność sygnału i zwiększył się generowany przez organ "hałas". A zatem to, co do tej pory uznawano za nic nieznaczący szum elektromagnetyczny, może być centralnym składnikiem normalnej pracy mózgu.
  8. W jaki sposób udaje nam się w hałaśliwym otoczeniu wyłapać te dźwięki, które nas interesują? Okazuje się, że jest to możliwe dzięki lewej półkuli. W życiu codziennym cały czas jesteśmy wystawiani na jednoczesne oddziaływanie kilku konkurencyjnych dźwięków i musimy umieć wychwytywać z tła istotne sygnały, np. mowę – wyjaśnił Reuterowi Ryusuke Kakigi z japońskiego Narodowego Instytutu Nauk Fizjologicznych. Lewa półkula zdominowała proces przetwarzania bodźców słuchowych w głośnym środowisku. Nie od dziś wiadomo, że odpowiada ona za analizę mowy, ale dzięki badaniu przeprowadzonemu przez kanadyjsko-japońsko-niemiecki zespół na Uniwersytecie w Münsterze udało się sprecyzować, jak konkretnie mózg koncentruje się na danych dźwiękach i je przetwarza. Wolontariuszom odtwarzano różne zestawienia dźwięków testowych i szumu. Dźwięk testowy nadawano do lewego lub prawego ucha, a konkurencyjny hałas do tego samego albo przeciwnego ucha – napisano w artykule opublikowanym w Internecie w serwisie BMC Biology. W tym samym czasie wykonywano obrazowanie mózgu. Większość aktywności nerwowej obserwowano właśnie w lewej półkuli.
×
×
  • Dodaj nową pozycję...