Znajdź zawartość
Wyświetlanie wyników dla tagów 'optyczny zegar atomowy' .
Znaleziono 2 wyniki
-
Eksperci z amerykańskiego Narodowego Instytutu Standardów i Technologii (NIST) udoskonalili swój optyczny zegar atomowy, bazujący na uwięzionych jonach glinu, do tego stopnia, że mierzy on czas z dokładnością do 19 miejsc po przecinku. Oznacza to, że jego dokładność wynosi 1 sekundę na 317 miliardów lat. Jest on więc najdokładniejszym istniejącym obecnie zegarem. To efekt 20 lat ciągłych prac nad udoskonalaniem glinowego zegara. Urządzenie jest obecnie o 41% bardziej precyzyjne niż dotychczasowy rekordzista i 2,6-krotnie bardziej stabilne niż inne zegary jonowe. Praca przy najbardziej precyzyjnym zegarze w historii jest niezwykle ekscytująca. W NIST prowadzimy długoterminowy program precyzyjnych pomiarów, dzięki którym poszerzamy naszą znajomość fizyki i lepiej poznajemy świat wokół nas, mówi Mason Marshall, główny autor artykułu, w który poinformowano o osiągnięciu. Jony glinu umożliwiają zbudowanie wyjątkowo precyzyjnego, stabilnego zegara atomowego. Drgania jonów glinu, używane do pomiaru czasu, są bardziej stabilne niż drgania jonów cezu, które są obecnie wykorzystywane do definiowania sekundy, wyjaśnia David Hume, który stoi na czele zespołu rozwijającego glinowy zegar atomowy. Ponadto jony glinu nie są tak wrażliwe na niektóre z czynników zewnętrznych – na przykład na temperaturę czy pola magnetyczne – jak jony cezu. Dlaczego wobec tego standardem w nauce są cezowe zegary atomowe i to one definiują sekundę? Otóż jony glinu jest trudno chłodzić i próbkować za pomocą lasera. A to niezbędne techniki zegarów atomowych. Dlatego też naukowcy z NIST połączyli jon aluminium z magnezem. Magnez nie drga tak dobrze jak glin, ale łatwo jest go kontrolować za pomocą lasera. Taki system nazywany jest kwantową spektroskopią logiczną, mówi pracująca przy projekcie studentka Willa Arthur-Dworschack. Jon magnezu chłodzi jon glinu. Porusza się też zgodnie ze swoim partnerem, dzięki czemu stan zegara można odczytać badając laserem stan jonu magnezu. Zegar atomowy to niezwykle skomplikowana maszyneria, a każdy jego element wpływa na precyzję działania całości. Podczas prac nad udoskonaleniem zegara naukowcy musieli poprawić wiele elementów. Jednym z nich była pułapka, w której znajdują się jony. Sama pułapka powoduje nadmiarowe mikroruchy jonów, które negatywnie wpływają na precyzję zegara. Jest to spowodowane nierównowagą ładunku elektrycznego na przeciwnych jej końcach. Naukowcy przebudowali pułapkę, umieszczając ją na grubszym diamentowym podłożu i modyfikując złotą powłokę na elektrodach. Kolejnym problemem był też system próżniowy, w którym znajduje się pułapka. Wodór przecieka przez stalowe ściany typowej komory próżniowej. Atomy wodoru zderzały się z jonami, przerywając ich pracę. Przez to co 30 minut konieczne było napełnianie pułapki nowymi jonami. Z problemem poradzono sobie zmieniając architekturę komory próżniowej i budując ją z tytanu. Wycieki wodoru zmniejszyły się 150-krotnie. To zaś spowodowało, że pułapka może działać nieprzerwanie przez wiele dni. W końcu trzeba było poradzić sobie z jeszcze jednym problemem, koniecznością posiadania bardziej stabilnego lasera do zliczania ruchu jonu. Wersja zegara z 2019 roku musiała działać przez kilka tygodni, by uśrednić fluktuacje kwantowe, losowe zmiany stanu energetycznego jonów spowodowane działaniem lasera. Teraz skorzystano z pomocy laboratorium NIST kierowanego przez Juna Ye. Posiada ono jeden z najbardziej stabilnych laserów na świecie. W laboratorium tym znajduje się zresztą zegar atomowy korzystający z atomów strontu, który w swoim czasie był najbardziej precyzyjnym tego typu urządzeniem. Za pomocą światłowodów wiązka lasera z laboratorium Ye została wysłana do laboratorium Tary Fortier z NIST, w którym znajduje się grzebień częstości optycznych. To rodzaj niezwykle precyzyjnej linijki do pomiaru częstości promieniowania optycznego. Ta linijka pozwoliła zespołowi pracującemu przy glinowym zegarze atomowym na porównanie swojego lasera z laserem z laboratorium Ye i przeniesienie jego stabilności do swojego laboratorium. Dzięki tej technice możliwe było próbkowanie jonów w zegarze przez pełną sekundę. Wcześniej próbkowanie takie mogło trwać nie dłużej niż 150 milisekund. W ten sposób zwiększono stabilność zegara, a czas potrzebny do osiągnięcia pomiaru rzędu 19 miejsc po przecinku skrócono z 21 do 1,5 dnia. Pobicie rekordu precyzji pomiaru czasu przyczyni się do lepszego zdefiniowania sekundy, ułatwienia kolejnych odkryć naukowych i postępu technologicznego. Nowy zegar będzie miał swój udział w rozwoju technologii kwantowych, bardziej precyzyjnym badaniu Ziemi czy w poszukiwaniu fizyki wykraczającej poza Model Standardowy. Źródło: High-Stability Single-Ion Clock with 5.5×10−19 Systematic Uncertainty, https://journals.aps.org/prl/abstract/10.1103/hb3c-dk28 « powrót do artykułu
- 7 odpowiedzi
-
- 1
-
-
- NIST
- optyczny zegar atomowy
-
(i 2 więcej)
Oznaczone tagami:
-
Naukowcy z Uniwersytetu Nauki i Technologii Chin w Hefei poinformowali o bezprzewodowym przekazaniu informacji o czasie i częstotliwości zegara optycznego na odległość ponad 100 kilometrów. To zaś umożliwi synchronizowanie i monitorowanie optycznych zegarów atomowych tam, gdzie nie można ich połączyć za pomocą światłowodów. Nowa technika będzie miała olbrzymie znaczenie dla metrologii, nawigacji czy systemów pozycjonowania, a także dla poszukiwania ciemnej materii czy testowania teorii względności. Optyczne zegary atomowe składają się z trzech głównych elementów. Tworzą go atomy lub jony, które przechodzą pomiędzy poziomami energetycznymi z dobrze zmierzoną i stabilną częstotliwością odpowiadającą częstotliwości promieniowania optycznego spektrum elektromagnetycznego. To one stanowią wzorzec atomowy. Drugim elementem jest niezwykle precyzyjny laser. Częstotliwość emitowanego przezeń światła jest dopasowana do różnicy energetycznej pomiędzy poziomami w atomach tworzących wzorzec atomowy. Pomiar odbywa się poprzez zliczanie zmian pola elektromagnetycznego w świetle laserowym. Jednak częstotliwość drgań znacznie wykracza poza możliwości elektroniki. Dlatego też rolę przekładni, która zlicza poszczególne drgania, pełni optyczny grzebień częstotliwości, czyli mówiąc wprost, laser femtosekundowy. Emituje on serię niezwykle krótkich – liczonych w femtosekundach – impulsów, spełniających rolę podziałki. Jest ona synchronizowana z częstotliwością światła lasera dopasowanego do wzorca atomowego. Uzyskanie naprawdę precyzyjnych pomiarów czasu wymaga jednak ciągłego porównywania czasu z co najmniej dwóch zegarów atomowych. Janwei Pan kierował zespołem, który przesłał dane pomiędzy systemem odbiorczym a zegarem atomowym na odległość 113 kilometrów. Po 10 000 sekund okazało się, że różnice między oboma systemami wynosiły mniej nią 4x10-19, co oznacza, że bezprzewodowego porównania czasu zegarów atomowych można dokonać z dokładnością 1 sekundy na 100 miliardów lat. Nasza praca otwiera drogę do porównywania czasów zegarów atomowych znajdujących się na satelitach z zegarami atomowymi na Ziemi, mówi Pan. Jego zdaniem w przyszłości będą mogły powstać całe sieci zegarów optycznych, łączące pomiędzy sobą zegary znajdujące się na satelitach, zegary na satelitach z zegarami naziemnymi oraz zegary naziemne pomiędzy sobą. Chińczycy przygotowują się teraz do przeprowadzenia eksperymentów, w ramach których chcą sprawdzić przekazywanie danych z zegarów atomowych zarówno pomiędzy satelitami, jak i pomiędzy satelitami a Ziemią. Mamy nadzieję, że niestabilność takiego systemu nie przekroczy 5x10-18 w ciągu 10 000 sekund, mówi Pan. Satelita, który posłuży tym eksperymentom, ma zostać wystrzelony w 2026 roku. Chińscy naukowcy wykorzystali podczas swoich badań technologie opracowane na potrzeby chińskiego satelity Micius, który generuje kwantowo splątane pary fotonów. Służy on do badań nad bezpiecznym przesyłaniem informacji kwantowej. Zaangażowany jest w nie wybitny polski uczony, profesor Artur Ekert, jeden z twórców kryptografii kwantowej. « powrót do artykułu
-
- optyczny zegar atomowy
- synchronizacja
-
(i 1 więcej)
Oznaczone tagami: