Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'kwant' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 4 wyniki

  1. Po raz pierwszy w historii udało się stworzyć efekt kwantowy w świecie, który może dojrzeć ludzkie oko. Naukowcy z University of California, Santa Barbara, wywołali interakcję pomiędzy kubitem a rezonatorem piezoelektrycznym wielkości 50 mikrometrów. W artykule opublikowanym w piśmie Nature, doktorant Aaron O'Connell oraz profesorowie John Martinis i Andrew Cleland, opisują, w jaki sposób schłodzili rezonator aż osiągnął on stan spoczynkowy (czyli przestał niemal całkowicie się poruszać) i użyli pojedynczego kwanta energii, by wywołać w nim wibracje. To ważny dowód na prawdziwość teorii kwantowej oraz znaczący krok w badaniach nad urządzeniami nanomechanicznymi - stwierdził Cleland. Uczeni zaprojektowali rezonator, który działa podobnie do rezonatorów w telefonach komórkowych. Pracuje on jednak przy wyższych częstotliwościach. Połączyli go następnie z urządzeniem służącym do obliczeń kwantowych - nadprzewodzącym kubitem. Całość schłodzili do temperatury bliskiej zeru absolutnemu. Następnie udowodnili, że rezonator zachowuje się tak, jak przewidują zasady mechaniki kwantowej. Byli w stanie stworzyć pojedynczy foton i obserwowali, jak dochodzi do wymiany energii pomiędzy kubitem a rezonatorem. Podczas tej wymiany były one ze sobą kwantowo splątane, co oznacza, że pomiar dokonywany na kubicie prowadził do zmian wibracji rezonatora. Podczas kolejnych eksperymentów uczeni wprowadzili rezonator w superpozycję, a więc stan, który reprezentował jednocześnie dwa stany, odpowiedniki 0 i 1. To energetyczny odpowiednik sytuacji, w której przedmiot znajdowałby się jednocześnie w dwóch róznych miejscach. Następnie dowiedli, że rezonator nadal zachowuje się zgodnie z prawami mechaniki kwantowej, a nie klasycznej.
  2. Jednym z największych problemów stojących przed specjalistami pracującymi nad komputerem kwantowym jest uodpornienie takiej maszyny na zakłócenie zewnętrzne. Dzięki pracom fizyków z University of Queensland może stać się to znacznie prostsze. Doktorzy Tom Stace, Andrew Doherty i Sean Barrett wykazali, że obliczenia kwantowe są bardzo odporne na liczne błędy. Okazało się, że urządzenie do obliczeń kwantowych może prawidłowo działać nawet wówczas gdy 10% jego komponentów wykonuje błędne wyliczenia. Prawidłowe wyniki otrzymamy też, gdy nawet 50% komponentów ulegnie awarii. "Urządzenia kwantowe są bardzo wrażliwe na zakłócenia z otoczenia, a ich wydajność może być znacząco upośledzona przez błędy. Nasze badania skupiały się zatem na opracowaniu sposobu na produkcję użytecznego urządzenia kwantowego z niedoskonałych komponentów. Te teoretyczne prace pozwalają nam stwierdzić, na ile precyzyjnie musi działać kwantowa maszyna, by spełnić swoje zadanie" - stwierdził Stance.
  3. Akademicy z Uniwersytetu Kalifornijskiego w Santa Barbara poinformowali o dokonaniu przełomowego odkrycia na polu kwantowego kontrolowania fotonów. Ich prace mogą mieć olbrzymie znaczenie na drodze do stworzenia komputerów kwantowych. Fizycy Max Hofheinz, John Martinis i Andrew Cleland opisali w jaki sposób użyli nadprzewodzącego złącza Josephsona do przygotowania rzadko spotykanych stanów kwantowych za pomocą promieniowania mikrofalowego. Naukowcy zamknęli fotony w mikrofalowej pułapce, w której światło odbija się w tę i z powrotem. Już wcześniej w takich pułapkach zamykali do 15 fotonów. Teraz udowodnili, że jednocześnie mogą zamknąć tam różną ich liczbę (0, 3 i 6). Stan kwantowy takiej pułapki można zmierzyć licząc fotony. Jednak, zanim je policzymy, pułapka znajduje się w kwantowej superpozycji, co oznacza, że przechowywane są w niej wszystkie możliwe rozwiązania, czyli 0,3 i 6. Cleland wyjaśnia: "superpozycja to podstawowe pojęcie mechaniki kwantowej. Po raz pierwszy udało się ją osiągnąć w sposób kontrolowany dzięki światłu. Naszą pułapkę można opisać jako kwantowy konwerter sygnału cyfrowego do analogowego". Konwertery takie są podstawowymi elementami współczesnych systemów komunikacyjnych. Prace naukowców z UCSB dają zatem nadzieję na rozwój kwantowej telekomunikacji.
  4. Jeśli dodamy zero do zera czy też pomnożymy 0 razy 0, to zwykle otrzymamy 0. Jednak, jak twierdzą badacze IBM-a, nie zawsze tak jest. Specjaliści z Thomas J. Watson Research Center zaprezentowali teoretyczną pracę dotyczącą przesyłania kwantowych informacji. Gdy wyślemy taką informację, czyli foton, światłowodem, w którym nie występują żadne zakłócenia, będziemy mogli odczytać ją, a więc odczytać stan fotonu, na drugim końcu przewodu. Inżynierowie Błękitnego Giganta proponują jednak inne rozwiązanie. Ich zdaniem można wysłać dwa splątane fotony dwoma oddzielnymi kablami, w których występują duże zakłócenia. Gdy fotony dotrą na miejsce, z żadnego ze światłowodów nie będziemy w stanie odczytać informacji, gdyż zostanie ona zniekształcona przez zakłócenia. Jednak z obu kabli jednocześnie informacja może zostać odczytana. Jeśli te teoretyczne rozważania uda się potwierdzić, to z jednej strony będzie można je wykorzystać w szyfrowaniu kwantowym, a z drugiej - ułatwi to budowę kwantowych komputerów. Jednak, jak przyznaje sam Graeme Smith, jeden z autorów wspomnianego dokumentu, teoria ta stawia więcej pytań, niż przynosi odpowiedzi. Jedna z interpretacji tego zjawiska jest taka, że oba fotony niosą różne rodzaje informacji. Jeśli tak jest w rzeczywistości, to pod znakiem zapytania staje dotychczasowe przekonanie specjalistów o tym, że informacja kwantowa nie jest podzielna na mniejsze składowe. Rozważania są oczywiście czysto teoretyczne, jednak teoria pochodzi z bardzo poważanego źródła, przez co może przewrócić do góry nogami niektóre przekonania. Patrick Hayden, profesor z McGill University, mówi, że badacze IBM-a otworzyli puszkę Pandory. Ich teoria tak mocno uderza w instytucję, w której pracuję, że muszę mieć więcej czasu na zastanowienie się nad nią - mówi Hayden. Dodaje przy tym: najbardziej wstrząsające jest to, że można połączyć dwie bezużyteczne rzeczy i powstanie rzecz użyteczna. Zdaniem profesora z teorii pracowników Błękitnego Giganta może powstać szersza teoria kwantowej synergii oraz nowe technologie rozwiązujące problem zakłóceń w komunikacji kwantowej. Sami autorzy mówią, że o ile ich teoria wygląda bardzo interesująco, to chcieliby zbudować coś praktycznego, co pozwoliłoby ją potwierdzić.
×
×
  • Dodaj nową pozycję...