Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'korekcja błędów' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 3 wyniki

  1. Niemal od samego początku rozwój komputerów i informatyki opiera się na cyfrowej logice binarnej. Wyjątki są bardzo nieliczne: słynny ENIAC działał w systemie dziesiętnym (ale też cyfrowym), w połowie XX wieku przez pewien czas korzystano z liczących maszyn analogowych. Te epizody są już dawno jednak zapomniane i dziś dominuje sztywna i jednoznaczna logika binarna. Nawet procesy i obliczenia analogowe, rachunek prawdopodobieństwa są dziś jedynie symulowane. Tak samo szum, dane losowe - są liczone przez dwójkowe algorytmy. Być może już niedługo zamiast symulować, będzie można obliczenia statystyczne i rachunek prawdopodobieństwa wykonywać bezpośrednio. Powstała właśnie firma, Lyric Semiconductor, stworzyła procesor całkiem nowego typu: probabilistyczny. Stany na jego wejściach, wyjściach i bramkach reprezentują nie logiczne 0 i 1, ale ich prawdopodobieństwo. Binarne bramki logiczne zastąpione są tzw. bramkami bayesowskimi. Jak mówi pomysłodawca i założyciel firmy, Ben Vigoda, trzeba było zaczynać całkowicie od zera. Podstawą teoretyczną były jego badania przeprowadzone podczas pisania pracy doktorskiej. Opracowanie podstaw tworzenia takich układów scalonych trwało w tajemnicy od 2006 roku. Pierwszy w pełni programowalny probabilistyczny procesor ma się pojawić za trzy lata, ale już teraz Lyric Semiconductor ma gotowy pierwszy produkt: chip dokonujący korekcji błędów. W porównaniu z wykonującym takie same funkcje układem binarnym, nowy układ jest 30 razy mniejszy i potrzebuje 12 razy mniej prądu. Chociaż jego działanie opiera się na całkowicie innych zasadach, będzie mógł być łączony ze zwykłą elektroniką, choć może być to pewnym wyzwaniem dla inżynierów. Korekcja błędów jest powszechnie stosowana, więc pole zastosowań jest nieograniczone. W miarę wzrostu pamięci masowych i przepustowości łącza, rośnie ryzyko przekłamań, przypadkowych zmian bitów z zera na jedynkę, lub odwrotnie. Aby temu zapobiec stosuje się dane kontrolne, które pozwalają odtworzyć poprawną wartość. Do tego potrzebne są jednak spore, statystyczne obliczenia, które procesor Bena Vigody wykonuje sprawniej i szybciej. Jeśli jego wartość potwierdzi się komercyjnie, bez wątpienia znajdzie się on w pamięciach masowych: twardych dyskach, układach pamięci flash, napędach optycznych, w elektronice systemów transmisyjnych: ruterów, modemów, kart sieciowych, itd. W pełni programowalny procesor będzie nieoceniony w procesach szyfrowania i deszyfrowania, obróbce danych (np. odszumianie), procesach sztucznej inteligencji (rozpoznawanie obrazów, rozumienie mowy przez komputer). Proponowanie nowych znajomych na Facebooku, sugerowanie stron w wyszukiwarce, filtrowanie spamu w poczcie elektronicznej, rekomendacje produktów w sklepach internetowych - tu wszędzie wykonywane są obliczenia probabilistyczne. Nowy układ ma więc szansę zrewolucjonizować elektronikę. Pojawiały się co prawda niedawno koncepcje procesorów odrzucających pełną jednoznaczność obliczeń i pozwalających na czynnik losowy podczas niektórych typów obliczeń, gdzie stuprocentowa dokładność nie jest konieczna (np. dekodowanie dźwięku i obrazu), ale w porównaniu z dziełem Vigody to były zaledwie ćwierćśrodki. Prace nad powstaniem probablilistycznego układu częściowo finansowała DARPA (U.S. Defense Advanced Research Projects Agency - agencja badawcza Departamentu Obrony USA).
  2. Wizjonerzy mamią nas wizjami komputerów kwantowych od dobrych dwudziestu lat. I pomimo nieustannego postępu w tej dziedzinie, w zasadzie wciąż jedyne osiągnięcia to laboratoryjne przykłady, a największy zbudowany „komputer" składał się z... aż trzech qubitów, czyli kwantowych bitów. Największym problemem, jak się uważa, będzie niezawodność takich konstrukcji i odporność na błędy, trudno bowiem zapanować nad stanem każdego pojedynczego atomu czy elektronu. Jak uważają angielscy i australijscy naukowcy, sprawa niekoniecznie musi być aż tak trudna. Doktor Sean Barrett z Imperial College London i Thomas Stace z University of Queensland w australijskim Brisbane sugerują dość proste rozwiązanie problemu błędów - korekcję. Korekcja błędów stosowana jest dzięki odpowiednim algorytmom w dzisiejszej elektronice, a wykorzystywana jest zwykle przy korzystaniu z pamięci masowych. Same programy korygujące muszą jednak działać niezawodnie... Korekcja błędnych danych w komputerze kwantowym musi jednak dotyczyć samego procesu przetwarzania, powinna zatem być jakoś powiązana z samym sposobem działania kwantowego mechanizmu. Taki sposób właśnie zaprojektował zespół pod kierunkiem dra Barreta. To system kontekstowego kodowania danych, który pozwala poprawnie działać algorytmom nawet w przypadku ubytku lub przekłamania 25% qubitów. Polega on na rozmieszczeniu elementów na trójwymiarowej matrycy, podczas odczytu z której brane są pod uwagę również sąsiadujące elementy. Taki kwantowy komputer byłby, zdaniem angielsko-australijskiego zespołu, znacznie łatwiejszy do skonstruowania. Tym niemniej, to wciąż są na razie prace teoretyczne i do pojawienia się komercyjnych konstrukcji może upłynąć kolejnych dwadzieścia lat.
  3. Hitachi zaprezentowało technologię, która umożliwia zapisanie na dysku twardym 610 gigabitów danych na cal kwadratowy. Teoretycznie pozwala to dwuipółkrotne zwiększenie pojemności HDD. Przedstawiciele Hitachi mówią, że dzięki ich pracom pojemność HDD może rosnąć w tempie 40% rocznie, a nowe dyski będą mniejsze, cichsze i bardziej energooszczędne od obecnie używanych. Specjaliści od pewnego już czasu uważają, że możliwe jest szybkie zwiększanie pojemności dysków, jednak w tym celu należy opracować nowe głowice, nowy nośnik i nowe technologie zapisu. Te jeszcze nie istnieją. Tymczasem Hitachi dowodzi, że obecnie dostępna technologia pozwala na osiągnięcie znacznego postępu. Zwiększając gęstość zapisu bez zwiększania powierzchni nośnika musimy zmniejszyć pojedynczą komórkę, w której przechowywane są dane. Gdy jednak zmniejszymy ścieżkę, to głowica odczytująco-zapisująca, pracująca na ścieżce sąsiedniej, będzie wpływała swoim polem magnetycznym na ścieżki, których dane powinny zostać nienaruszone. Hitachi opracowało technologię WAS (wrap-around shield - osłona dookólna), która izoluje sygnał z głowicy. Opracowano też nowy typ głowicy TMR (Tunelling MagnetResistance - magnetoopór tunelowy), która zapewnia odpowiedni stosunek sygnału do szumu. Nowa głowica składa się z dwóch części, osobnej do zapisu i odczytu, a praca każdej z nich jest na bieżąco monitorowana. Japońscy naukowcy wynaleźli też technikę, dzięki której dysk nie musi korzystać z systemu korekcji błędów. W tradycyjnych dyskach oprogramowanie do korekcji jest powszechnie stosowane. Ma ono tę wadę, że informacje potrzebne do korekcji zajmują miejsce, które można by przeznaczyć na zapis danych. Dzięki rezygnacji z mechanizmu korekcji w przyszłości uda się zaoszczędzić dodatkowo 4% miejsca, co pozwoli na zwiększenie gęstości zapisu do 635 Gb/cal2.
×
×
  • Dodaj nową pozycję...