Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'kolosalny magnetoopór' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 1 wynik

  1. Bardzo pojemne, niewielkie dyski twarde, z którymi mamy do czynienia w pecetach, notebookach czy odtwarzaczach MP3 mogą istnieć dzięki odkryciu przed 20 laty zjawiska gigantycznego magnetooporu (GMR). To ono umożliwiło udoskonalenie tych urządzeń i przyczyniło się do narodzin spintroniki. Teraz naukowcy z Carnegie Institution of Science są na tropie zjawiska nazwanego kolosalnym magnetooporem (CMR), które jest tysiące razy potężniejsze niż GMR i może zapowiadać kolejną rewolucję w informatyce. Występowanie CMR odkryto w manganitach, a prawdziwym wyzwaniem jest zrozumienie i kontrolowanie tego zjawiska. Fakt występowania magnetooporu w manganitach czyni z nich świetny materiał do produkcji pamięci MRAM. W układach tych magnetyczne tunelowanie elektronów pomiędzy dwiema warstwami manganitu oddzielonego warstwą izolatora zależy od relatywnej orientacji pola magnetycznego w manganitach. Niestety, naukowcy nie potrafią obecnie w pełni wyjaśnić wszystkich zjawisk, w tym CMR, zachodzących w manganitach. Problem w tym, że pomiędzy elektronami w manganitach zachodzą przeciwstawne interakcje, które wpływają na właściwości magnetyczne. Ponadto właściwości te zależą też od czynników zewnętrznych, takich jak temperatura, ciśnienie, pole magnetyczne czy domieszkowanie chemiczne - mówi Yang Ding z Carnegie. Ciśnienie ma wyjątkowy wpływ na manganity, gdyż zmienia interakcje pomiędzy elektronami w jasne i naukowo 'przejrzyste' zjawisko. Daje nam szanse na bezpośrednie efektywne manipulowanie zachowaniem elektronów i może dostarczyć cennych informacji na temat magnetycznych i elektrycznych właściwości systemu zbudowanego z manganitów. Jednak ze wszystkich zjawisk zewnętrznych to właśnie wpływ ciśnienia został najmniej zbadany - dodaje Ding. Naukowcy odkryli, że w przy ciśnieniu 230 000 razy przekraczającym ciśnienie na Ziemi manganity zmieniają się z ferromagnetyków w antyferrromagnetyki. Mamy też do czynienia ze zjawiskiem Jahna-Tellera czyli nierównomierną dystorsją sieci krystalicznej. To bardzo ciekawe zjawisko, które nie zostało przewidziane przez teorię, gdy jednolite ciśnienie prowadzi do niejednolitych zmian strukturalnych - zauważa Ding. Zauważono też, że zmiana właściwości magnetycznych w manganitach poddawanych wysokiemu ciśnieniu nie odbywa się jednorodnie, ale "rozprzestrzeniają się" one stopniowo. To z kolei, jak mówią uczeni, sugeruje, że nawet w zwykłych warunkach w skali nano manganity mogą jednocześnie wykazywać właściwości ferromagnetyków i antyferromagnetyków. W tym momencie wkraczamy na znajome pole, gdyż jednym z podstawowych pól działalności nanotechnologii jest manipulowanie fazami termodynamicznymi materiałów.
×
×
  • Dodaj nową pozycję...