Znajdź zawartość
Wyświetlanie wyników dla tagów 'aptamery' .
Znaleziono 2 wyniki
-
W dzisiejszych czasach trudno wyobrazić sobie dziedzinę, w której nie znalazłoby się zastosowania dla nanotechnologii. Na rozwoju tej nauki mogą skorzystać także mikrobiolodzy, o czym świadczy aparat zaprezentowany przez naukowców z Universitat Rovira i Virgili w hiszpańskiej Tarragonie. Stworzony przez Hiszpanów prototyp, opisany na łamach międzynadorowego wydania czasopisma Angewandte Chemie jest zdolny do wykrywania bakterii Salmonella typhi, odpowiedzialnych za ciężkie i trudne do wyleczenia infekcje u ludzi. Zaprezentowany aparat jest tak czuły, że nie stanowi dla niego większego problemu detekcja nawet pojedynczej komórki bakteryjnej znajduącej się w badanym materiale. Sercem opracowanego urządzenia są nanorurki o ścianach zbudowanych z pojedynczej warstwy atomów węgla. Ich wnętrze zostało zmodyfikowane na drodze chemicznej, a następnie przyłączono do niego aptamery - syntetyczne fragmenty RNA zaprojektowane w celu wybiórczego wiązania jednego z antygenów znajdujących się na powierzchni komórek S. typhi. Wykrywanie bakterii odbywa się dzięki pomiarowi zmian siły elektromotorycznej podczas przyłączenia się bakterii do aptamerów. Odczyt niezbędnych parametrów odbywa się w czasie rzeczywistym i jest na tyle precyzyjny, że możliwe jest dokładne określenie liczby komórek znajdujących się w badanej próbce. Istotny jest także fakt, iż opracowany sensor jest wysoce swoisty, tzn. nie wykrywa bakterii należących do gatunków innych niż S. typhi. Hiszpańscy badacze nie sprecyzowali, czy - i jeśli tak, to kiedy - ich wynalazek mógłby trafić na rynek. Jeżeli jednak będzie on tak skuteczny, jak wynika z dotychczasowych eksperymentów, możemy być niemal pewni, że jego jego komercjalizacja stanie się faktem.
-
- bakterie
- mikrobiologia
- (i 7 więcej)
-
W przypadkach wystąpienia poważnych skutków ubocznych lub przedawkowania leku warto mieć pod ręką szybko działające antidotum. Jest to szczególnie istotne w odniesieniu do środków zapobiegających krzepnięciu krwi, które są używane do leczenia zakrzepicy oraz zatorów, zawałów serca, a także (w wyższych dawkach) przy dializach i operacjach serca z zastosowaniem tzw. płucoserca. Ich przedawkowanie może prowadzić do zagrażających życiu krwotoków. Do tej pory jedynym lekiem przeciwzakrzepowym ze znanym specyficznym antidotum była niefrakcjonowana heparyna (UFH). Stosowano ją m.in. u pacjentów z wysokim ryzykiem krwawienia oraz gdy trzeba było użyć antykoagulanta o szybko niwelowanym działaniu, mimo że opracowano wiele innych obiecujących środków. Teraz jednak ekipa niemieckich badaczy z Bonn, pod przewodnictwem Alexandra Heckla i Bernarda Pötzscha, opracowała antykoagulant połączony z własnym antidotum. Naświetlanie promieniami UV aktywuje fragment cząsteczki odgrywający rolę antidotum, co niemal natychmiast blokuje inhibitory krzepnięcia. Nowa substancja bazuje na aptamerze, który wiąże się z trombiną, kluczowym białkiem procesu krzepnięcia, i uniemożliwia jej działanie. Aptamery są krótkimi (kilku- lub kilkunastonukleotydowymi, dlatego nazywa się je oligonukleotydami) jednoniciowymi fragmentami DNA lub RNA. Mają strukturę przestrzenną niezwykle dopasowaną do cząsteczki docelowej, w tym wypadku trombiny. Wykazują wysokie powinowactwo i specyficzność wiązania, podobnie jak przeciwciała. Niektórzy uważają, że aptamery i przeciwciała mogą ze sobą konkurować o miano najlepszych receptorów uniwersalnych. Aptamery łatwo poddają się modyfikacjom chemicznym, np. znakowaniu izotopami radioaktywnymi, potrafią też od siebie odróżnić bardzo podobne strukturalnie cząsteczki. Badacze niemieccy dołączyli do aptamerów trombiny jeszcze jeden krótki fragment DNA. To właśnie ta nić kwasu nukleinowego pełni funkcję aktywowanej promieniowaniem ultrafioletowym "odtrutki". Dopóki nie zadziała starter, zastosowany lek jest efektywnym antykoagulantem (antagonistą dla trombiny). DNA antidotum jest komplementarne do części aptameru wiążącej się z trombiną, z wyjątkiem jednego (lekko zmienionego) nukleotydu, który ma w założeniu stanowić błąd w sekwencji. Gdy istnieje pełna komplementarność, nici zaczynają się skręcać, formując podwójną helisę. Proces ten jest hamowany na samym początku przez zmieniony nukleotyd. Pod wpływem promieni UV część "błędnego" nukleotydu odłącza się i powstaje prawidłowy nukleotyd. Antidotum ściśle dopasowuje się do aptameru, który zmienia swoją strukturę przestrzenną i nie pasuje już do trombiny.
-
- receptor
- promienie UV
-
(i 5 więcej)
Oznaczone tagami: