Znajdź zawartość
Wyświetlanie wyników dla tagów 'Atomowy ping-pong fotonami jest możliwy' .
Znaleziono 1 wynik
-
Atomy mogą absorbować i ponownie emitować światło. Jednak zwykle te zaabsorbowane fotony są emitowane we wszystkich możliwych kierunkach. Naukowcy z Uniwersytetu Technologicznego w Wiedniu teoretycznie dowiedli, że za pomocą soczewek można doprowadzić do sytuacji, w której foton emitowany przez atom trafi do drugiego atomu, przez który zostanie zaabsorbowany, a następnie zostanie emitowany do pierwszego atomu. W ten sposób atomy będą przekazywały sobie foton z niezwykłą precyzją. Jeśli atom emituje foton gdzieś w przestrzeni, to kierunek emisji jest całkowicie przypadkowy, jest zatem niemal niemożliwe, by atom położony gdzieś w przestrzeni przechwycił ten foton. Foton propaguje się jako fala, co oznacza, że nikt nie jest w stanie dokładnie określić, w jakim kierunku się rozprzestrzenia. Tylko przypadkiem może on trafić do drugiego atomu, mówi profesor Stefan Rotter. Sytuacja może jednak ulec zmianie, gdyż eksperyment z atomami i fotonem przeprowadzimy w zamkniętym środowisku. Naukowcy z Austrii przywołują tutaj przykład galerii szeptów, najczęściej sferycznych czy elipsoidalnych struktur, gdzie dwie osoby – ustawione w konkretnych miejscach – mogą porozumiewać się szeptem na duże odległości. Coś podobnego można zbudować dla światła, umieszczając dwa atomy w odpowiednich punkach elipsy. W praktyce jednak atomy takie trzeba by umieścić w tych punktach z niezwykłą precyzją, wyjaśnia Oliver Diekmann, główny autor artykułu opublikowanego w Physical Review Letters. Austriacy postanowili się opracować lepszą strategię umożliwiającą przekazywanie fotonu pomiędzy atomami. W swoich rozważaniach wykorzystali soczewki typu rybie oko. Dzięki nim możliwe jest spowodowanie, że wszystkie promienie emitowane z jednego atomu dotrą po zakrzywionym do krawędzie soczewki, gdzie zostaną odbite i po innym zakrzywionym torze dotrą do atomu docelowego, mówi Diekmann. Wykazaliśmy, że sprzężenie pomiędzy atomem, a licznymi drganiami swobodnymi pola świetlnego można wykorzystać w taki sposób, by precyzyjnie skierować foton z jednego atomu do drugiego, dodaje profesor Rotter. Uczeni z Wiednia przeprowadzili dowód teoretyczny, jednak zapewniają, że jego przetestowanie jest możliwe już przy użyciu obecnie dostępnych technologii. W praktyce wydajność takiego systemu można zwiększyć, używając nie dwóch atomów, a dwóch grup atomów. Eksperymenty tego typu mogą być interesującymi punktami wyjścia dla kwantowych systemów kontroli służących badaniu interakcji światła i materii, zapewnia Rotter. « powrót do artykułu