Znajdź zawartość
Wyświetlanie wyników dla tagów 'Argonne National Laboratory' .
Znaleziono 2 wyniki
-
Ostatnie badania przeprowadzone przez Argonne National Laboratory i Carnegie Institution pozwolą na znaczne udoskonalenie nanomateriałów. To z kolei przyczyni się do powstania lepszych ogniw słonecznych, czujników czy urządzeń do obrazowania medycznego. Uczeni opracowali bowiem technikę umożliwiającą obserwowanie tworzenia się nanocząsteczek w czasie rzeczywistym. Wzrost nanokryształów to fundament nanotechnologii. Zrozumienie tego procesu pozwoli na precyzyjne dopasowywanie i tworzenie nanocząsteczek o fascynujących właściwościach - mówi Yugang Sun, chemik z Argonne. Wygląd i zachowanie się nanocząstek zależy od ich kształtu, wielkości, teksktury i właściwości chemicznych powierzchni. Te cech są kształtowane podczas wzrostu, dlatego też tak ważną rzeczą jest możliwość obserwowania nanokryształów podczas tworzenia się. Dokładne kontrolowanie nanocząsteczek jest bardzo trudne. A jeszcze trudniejsze jest wyprodukowanie takich samych nanocząstek podczas dwóch procesów produkcyjnych, gdyż wciąż nie posiadamy zbyt wielu informacji o warunkach ich kształtowania się. Temperatura, ciśnienie, wilgotność, obecność zanieczyszczeń - wszystkie one mają wpływ na wzrost nanocząstek, a wciąż odkrywamy nowe czynniki - dodaje Sun. Możliwość prowadzenia obserwacji jest konieczna do określenia wszystkich wspomniany czynników. Problem jednak w tym, że mikroskopia elektronowa, używana do obserwacji w skali nano, wymaga zastosowania próżni. A wiele nanokryształów rośnie w środowisku płynnym. Dotychczas możliwe było zastosowanie pewnych technik pozwalających na obserwację, jeśli grubość warstwy płynu nie przekraczała 100 nanometrów, jednak to technika bardzo niedoskonała, gdyż takie warunki odbiegają od warunków, w jakich rosną nanokryształy. Teraz amerykańscy naukowcy wykorzystali bardzo intensywane promieniowanie X do obserwacji wzrostu kryształów. Co prawda promienie X wpływają na ten proces, jednak po długotrwałym naświetlaniu, a zatem jest wystarczająco dużo czasu, by bez obawy zakłócenia wzrostu przyjrzeć się, jak powstają nanokryształy.
- 2 odpowiedzi
-
- nanokryształy
- nanocząstki
-
(i 3 więcej)
Oznaczone tagami:
-
Zamiast wyrzucać plastikowe torby możemy je przekazać do przetworzenia, a dzięki nowej technologii powstaną z nich nie kolejne plastikowe torby, ale... węglowe nanorurki. Sposób na ich produkcję został opracowany przez Vilasa Ganpata Pola z Argonne National Laboratory, któremu udało się zmienić mało wartościowe torby w drogie nanorurki. Naukowiec przez dwie godziny podgrzewał 1 gram HDPE lub LDPE w temperaturze 700 stopni Celsjusza w obecności octanu kobaltu, który działał jak katalizator, a następnie powoli schładzał całość. W temperaturze powyżej 600 stopni Celsjusza wiązania chemiczne w plastikowej torbie rozpadły się, a na powierzchni cząsteczek katalizatora zaczęły rosnąć węglowe nanorurki o wielu ścianach. Do przeprowadzenia całego procesu trzeba sporo katalizatora, bo aż 20% masy przetwarzanego kawałka plastikowej reklamówki. Ponadto późniejsze jego odzyskanie nie jest proste. Jednak, jak zapewnia Pol, to i tak jedna z najtańszych i najbardziej przyjaznych środowisku metod produkcji nanorurek. Inne metody wymagają korzystania z komory próżniowej, by nie doszło do reakcji z tlenem. W mojej technice próżnia nie jest potrzebna. Formowaniu się tlenu zapobiega węglowodorowa 'atmosfera' o temperaturze 700 stopni - mówi uczony. Naukowiec przeprowadził już testy swoich nanorurek. Bez oddzielania ich od katalizatora, odpowiednio pociął uzyskany materiał i wykorzystał go do budowy anody baterii litowo-jonowej. Pracowały fantastycznie. Ich pojemność jest większa niż nanorurek obecnie dostępnych w handlu - stwierdził. Zanieczyszczenie kobaltem powoduje, że nadają się one do wykorzystania w bateriach litowo-powietrznych, w których kobalt działa jak katalizator utleniając się do tlenków kobaltu. Tak więc gdy wykorzystamy nanorurki Pola do budowy baterii, cząsteczki kobaltu stają się nie zanieczyszczeniem, a przydatnym składnikiem. Co prawda użycie drogiego kobaltu, który trudno jest odzyskać, może stanowić problem przy masowej produkcji nanorurek metodą Pola, jednak, jak zauważa uczony, baterie litowo-jonowe i litowo-powietrzne już obecnie są poddawane recyklingowi i kobalt jest z nich odzyskiwany.