Znajdź zawartość
Wyświetlanie wyników dla tagów ' wiązka światła' .
Znaleziono 2 wyniki
-
Zespół naukowców z Wydziału Fizyki Uniwersytetu Warszawskiego, we współpracy z przedstawicielami instytucji zagranicznych, opracował mikroskopijne soczewki polimerowe, pozwalające na optyczne badanie obiektów dziesięć razy mniejszych niż cząstka wirusa SARS-CoV-2 bez wykorzystania mikroskopu. Soczewki te wytworzono dzięki ultraprecyzyjnej technologii laserowego druku 3D. Technologia druku 3D, której dynamiczny rozwój już okrzyknięto trzecią rewolucją przemysłową, polega na wytworzeniu (wydrukowaniu) warstwa po warstwie trójwymiarowego obiektu na podstawie modelu komputerowego. W ostatnich latach oferta drukarek 3D oraz tworzyw, z których można drukować, niezwykle się poszerzyła. Wzrosły też możliwości samych urządzeń. Można, na przykład, z niespotykaną dotąd precyzją drukować obiekty z tworzyw przezroczystych o wysokiej jakości optycznej. Rozwój druku 3D otwiera nowe perspektywy dla wielu dziedzin nauki i technologii, np. dla biologii, medycyny, robotyki, mikrooptyki czy badań nad optycznym przetwarzaniem informacji. Naukowcy z Wydziału Fizyki UW zaprojektowali i wytworzyli za pomocą unikalnej w skali kraju ultrarozdzielczej laserowej drukarki 3D maleńkie soczewki. Mają one wymiary wielokrotnie mniejsze od średnicy ludzkiego włosa i mogą stać się nieocenioną pomocą w optycznych pomiarach struktur półprzewodnikowych. Soczewki te zwiększają ilość możliwego do zaobserwowania światła pochodzącego z próbek zawierających np. kropki kwantowe czy, niezwykle popularne ostatnio, atomowo cienkie materiały dwuwymiarowe. Do tych ostatnich należą m.in. diselenek molibdenu i diselenek wolframu, które mają strukturę podobną do grafenu. Wydrukowana mikrosoczewka ma tak zaprojektowaną powierzchnię, żeby światło emitowane z próbki formować w wiązkę fotonów o niskiej rozbieżności, którą to wiązkę można łatwo przesłać do aparatury badawczej i pomiarowej. W ten sposób mikrosoczewka może zastąpić drogi i nieporęczny rozmiarowo obiektyw mikroskopowy. Typowe obiektywy mikroskopowe wysokiej klasy mają w przybliżeniu rozmiar ogórka gruntowego i ważą do pół kilograma. Muszą być precyzyjnie umieszczane w odpowiedniej odległości (mniejszej niż kilka milimetrów) od analizowanej próbki. To nakłada istotne ograniczenia na wykonanie wielu eksperymentów z dziedziny fizyki półprzewodników, takich jak pomiary w wysokich (impulsowych) polach magnetycznych, w bardzo niskich temperaturach czy z udziałem promieniowania mikrofalowego. Z kolei opracowane mikrosoczewki można, bez dodatkowych modyfikacji, wykorzystać w wymienionych technikach badań. Działają zarówno w ekstremalnie niskich temperaturach (bliskich zeru bezwzględnemu), jak i w gigantycznych polach magnetycznych, niewystępujących naturalnie na naszej planecie. Druk 3D jest bardzo wydajny, dzięki czemu można w krótkim czasie wyprodukować setki mikrosoczewek na jednym podłożu. Ułożone w regularną sieć, podobnie jak figury na szachownicy, tworzą na próbce układ współrzędnych. Pozwala on dokładnie określić lokalizację wybranego emitera światła w próbce półprzewodnikowej. To z kolei umożliwia wielokrotne pomiary tego samego emitera w różnych laboratoriach na świecie. Do tej pory ponowne odnalezienie danego obiektu świecącego w próbce było bardzo czasochłonne. Możliwość powrotu do tego samego emitera jest, z punktu widzenia badań podstawowych, bezcenna, ponieważ znacznie zwiększa efektywność pomiarów i ułatwia testowanie nowych hipotez. Niewielka modyfikacja kształtu proponowanych mikrosoczewek pozwala produkować je wielkoskalowymi, przemysłowymi technikami powielania, np. odciskaniem matrycy. Kolejnym krokiem badaczy będzie dostosowanie projektu soczewek do wymogów technologii światłowodowej, która jest przyszłością urządzeń opartych na wykorzystaniu światła. Publikacja na ten temat znalazła się w piśmie Nature. « powrót do artykułu
-
- mikrosoczewki
- wiązka światła
-
(i 2 więcej)
Oznaczone tagami:
-
Milimetrowy silnik obrotowy napędzany światłem
KopalniaWiedzy.pl dodał temat w dziale Astronomia i fizyka
Badacze z Wydziału Fizyki Uniwersytetu Warszawskiego wraz ze współpracownikami z Polski i Chin, zademonstrowali mikrosilnik zasilany wprost wiązką światła. Polimerowy pierścień o średnicy 5 milimetrów, napędzany i sterowany przy pomocy wiązki lasera, potrafi obracać się i wykonywać pracę, np. obracając inny element osadzony na tej samej osi. Ruch obrotowy w przyrodzie jest bardzo rzadko spotykany, podczas gdy nasza cywilizacja jest nim napędzana. Potrafimy budować rozmaite silniki obrotowe, które składają się zwykle z wielu elementów, co utrudnia ich miniaturyzację. Istnieje jednak grupa materiałów umożliwiających konstrukcję małych, ruchomych urządzeń – ciekłokrystaliczne elastomery (ang. liquid crystal elastomer, LCE). Badania nad tymi materiałami skupiają się głównie na projektowaniu kształtu i sposobu odkształcenia elementów z LCE (np. skracanie, zginanie). Dlatego tak ważne było spojrzenie na LCE z innej strony, co doprowadziło do skonstruowania obrotowego mikrosilnika. Ciekłokrystaliczne elastomery to inteligentne materiały, które mogą szybko, w odwracalny sposób zmieniać kształt, na przykład po oświetleniu. Dzięki odpowiedniemu uporządkowaniu (orientacji) cząsteczek elastomeru można programować deformację elementu. Umożliwia to zdalne zasilanie i sterowanie mechanizmów wykonawczych i robotów przy pomocy światła. Wykorzystując technologię światłoczułych elastomerów badacze z Wydziału Fizyki Uniwersytetu Warszawskiego we współpracy z badaczami z Wydziału Matematyki Uniwersytetu w Suzhou w Chinach, Instytutu Fizyki Technicznej Wojskowej Akademii Technicznej w Warszawie oraz Centrum Materiałów Polimerowych i Węglowych Polskiej Akademii Nauk w Zabrzu zbudowali mikrosilnik, który obraca się dzięki wędrującej deformacji miękkiego materiału, wywołanej wiązką lasera. Oświetlana część silnika (rotor) ma kształt pierścienia o średnicy 5 milimetrów. Projektując odpowiednią orientację cząsteczek elastomeru można zapewnić stabilną pracę tego mikrosilnika albo zwiększyć jego prędkość obrotową. Mimo niewielkiej prędkości obrotowej, około jednego obrotu na minutę, nasz silnik pozwala spojrzeć z innej strony na mikromechanikę inteligentnych miękkich materiałów oraz ich potencjalne zastosowania – mówi dr inż. Klaudia Dradrach z Pracowni Nanostruktur Fotonicznych. Pomysł inspirowany jest silnikiem piezoelektrycznym, często spotykanym w obiektywach fotograficznych. Wsparcie naukowców z Polskiej Akademii Nauk z Zabrza i Wojskowej Akademii Technicznej było kluczowe – dzięki niemu opracowaliśmy powtarzalną metodę wytwarzania odkształcalnych miniaturowych elementów z LCE. W naszych badaniach brali udział młodzi naukowcy, m.in. Mikołaj Rogóż i Przemysław Grabowski, doktoranci z Wydziału Fizyki UW. Badacze, którzy wcześniej zademonstrowali napędzanego światłem robota-ślimaka poruszającego się tak jak jego krewni występujący w przyrodzie wierzą, że nowe inteligentne materiały w połączeniu z nowatorskimi metodami wytwarzania miniaturowych elementów, pozwolą im konstruować kolejne miniaturowe elementy i napędy. Obecnie pracują nad mikronarzędziami sterowanymi światłem i dalekozasięgowymi siłownikami liniowymi. Badania nad miękkimi mikrorobotami i polimerowymi mechanizmami wykonawczymi są finansowane są przez Narodowe Centrum Nauki w ramach projektu "Mechanizmy wykonawcze w mikro-skali na bazie foto-responsywnych polimerów", Ministerstwo Nauki i Szkolnictwa Wyższego w ramach "Diamentowego Grantu" przyznanego M. Rogóżowi, Ministerstwo Obrony Narodowej i program badawczy uniwersytetu w Suzhou. Wyniki badań ukazały się w piśmie ACS Applied Materials & Interfaces. « powrót do artykułu- 3 odpowiedzi
-
- silnik obrotowy
- rotor
-
(i 5 więcej)
Oznaczone tagami: