Znajdź zawartość
Wyświetlanie wyników dla tagów ' sztuczna inteligencja' .
Znaleziono 3 wyniki
-
Prosto o AI. Jak działa i myśli sztuczna inteligencja?
KopalniaWiedzy.pl dodał temat w dziale Książki
„Ala ma kota” to pierwsze i – prawdę mówiąc – jedyne zdanie, jakie pamiętam z elementarza. I właśnie to zdanie, które kolejne pokolenia poznają dzięki legendarnemu „Elementarzowi” Falskiego prowadzi nas przez „Prosto o AI. Jak działa i myśli sztuczna inteligencja” autorstwa Roberta Trypuza. Niewielki format książeczki sugeruje, że znajdziemy w niej niezbyt wiele informacji. Nic bardziej mylnego. To elementarz, skoncentrowana skarbnica wiedzy o technologii, która już teraz w znaczącym stopniu zmienia ludzkie życie. Robert Trypuz jest praktykiem. To specjalista w dziedzinie Semnatic Web i inżynierii danych. Doktorat z informatyki i telekomunikacji uzyskał na Uniwersytecie w Trydencie, jest też doktorem habilitowanym filozofii z KUL. I, co widać w książce, jest entuzjastą sztucznej inteligencji, o której potrafi bardzo ciekawie pisać. Z „Prosto o AI” dowiemy się na przykład jak wygląda programowanie AI w porównaniu z programowaniem klasycznym, jak AI rozumie tekst, czym jest osadzanie słów oraz jakie rewolucyjne podejście pozwoliło na skonstruowanie dużych modeli językowych, w tym najbardziej znanego z nich ChataGPT. Przeczytamy o sieciach konwolucyjnych w medycynie, uczeniu ze wzmacnianiem, autor – pamiętajmy, że jest również filozofem – opisuje, czym jest sztuczna wolna wola, zatem czy AI ma wolną wolę. W ostatnim zaś odcinku znajdziemy rozważania na temat wpływu sztucznej inteligencji na proces edukacji. Nie ma w tym zdaniu pomyłki, odcinku, a nie rozdziale. Historia jest mianowicie taka, że treści zawarte w tej książce nie zostały napisane do tej książki. Pisałem je jako scenariusze odcinków programu, który nigdy nie powstał, pisze Robert Trypuz we wstępie. I może właśnie pochodzenie tekstu, który zamienił się w książkę, powoduje, że tak łatwo można przyswoić zawarte w niej informacje. Dla kogo jest zatem „Prosto o AI”? Dla każdego z nas, kto nigdy bardziej nie zagłębił się w tajniki sztucznej inteligencji. Tutaj znajdzie jej podstawy wyjaśnione w prosty sposób. Większości czytelników pogłębienie wiedzy do tego stopnia w zupełności wystarczy, jakąś zaś część zachęci, by sięgnąć po kolejne, bardziej szczegółowe i specjalistyczne pozycje. Ja czytałem książkę Trypuza z olbrzymim zainteresowaniem i przyjemnością.-
- Prosto o AI
- sztuczna inteligencja
-
(i 2 więcej)
Oznaczone tagami:
-
Dr inż. Marcin Sieniek jest absolwentem Akademii Górniczo-Hutniczej w Krakowie i tamtejszego Uniwersytetu Ekonomicznego. Na AGH otrzymał również doktorat z informatyki za badania w dziedzinie nauk obliczeniowych. W Google Health zajmuje się pracą nad zastosowaniem sztucznej inteligencji w diagnozie raka piersi. Oprócz Google pracował w zespole Autopilota Tesli oraz prowadził w Polsce startup z dziedziny social learning. Prywatnie gra w zespole rockowym i prowadzi bloga expat-pozytywnie.pl. Jak trafia się do Google Health i dlaczego właśnie tam? To dość niszowa działka w działalności Google'a czy Alphabetu i wymagająca chyba szczególnych umiejętności? W Google Health pomocne są przede wszystkim różnorodne umiejętności i doświadczenia. W Google pracuję od ponad 5 lat, początkowo jako inżynier oprogramowania w polskim biurze firmy. Jednak już od samego początku pracowałem nad wykorzystywaniem sztucznej inteligencji, a konkretniej określonych technik - tzw. uczenia maszynowego. Później kontynuowałem pracę nad moimi projektami w amerykańskich biurach Google. Dopiero wtedy, szukając ciekawych wyzwań wewnątrz firmy, znalazłem możliwość dołączenia do Google Research - działu firmy skupiającego się na badaniach nad rozwojem sztucznej inteligencji i jej wykorzystaniem w różnych dziedzinach życia. Tam powstawał właśnie mały zespół badawczy zajmujący się zastosowaniem głębokiego uczenia maszynowego właśnie w radiologii. Proces selekcji do zespołu był wymagający - sprawdzano m.in. znajomość technik sztucznej inteligencji oraz udokumentowane doświadczenie w badaniach biotechnologicznych co akurat zupełnie przypadkiem było przedmiotem jednej z moich prac na studiach doktoranckich. Pod koniec 2018 roku mój zespół stał się częścią nowego działu Google Health - łączącego w sobie nie tylko inżynierów oprogramowania, ale także doświadczenie i wiedzę lekarzy, prawników, etyków i specjalistów od procedur medycznych. Jest Pan jednym ze współtwórców algorytmu, który lepiej diagnozuje raka piersi niż lekarze. Jak powstaje i działa taki algorytm? Algorytm taki powstaje podobnie jak np. technologia która pozwala rozpoznawać co znajduje się na zdjęciu. Algorytm sztucznej inteligencji jest „szkolony” na istniejącym zbiorze danych, gdzie obrazom (w tym wypadku medycznym, czyli zdjęciom z mammografii) towarzyszą oznaczenia (w tym wypadku: czy wykryto nowotwór złośliwy i ewentualna informacja o jego umiejscowieniu). Takie zbiory danych powstają w ramach normalnej praktyki w szpitalach i centrach programów przesiewowych, jednak często na tym ich zastosowanie się kończy. Takie algorytmy działają na bazie mechanizmu zwanego „sieciami neuronowymi”. Ich struktura inspirowana jest tym w jaki sposób informacje przetwarza ludzki mózg. Proces nauki przypomina w istocie proces w którym człowiek uczy się rozróżniać obrazy (np. dziecko rozpoznawać koty i psy, a radiolog rozpoznawać groźne guzy od nieszkodliwych zmian). W odróżnieniu jednak od radiologa, który w toku treningu może zobaczyć kilkadziesiąt-kilkaset nowotworów, komputer jest w stanie przetworzyć dziesiątki tysięcy przykładów w przeciągu jedynie kilku godzin. Taki „wytrenowany” algorytm stosuje się następnie do oceny osobnego, nowego zbioru danych. Następnie inżynierowie mogą wprowadzić poprawki w procesie uczenia się albo w budowie modelu i powtórzyć testy. Dopiero gdy wyniki działania modelu zadowalają jego twórców, sprawdza się go na kolejnym zbiorze danych, np. pochodzących z innej instytucji lub z innego źródła. Na tym właśnie etapie postanowiliśmy opublikować nasz artykuł w Nature. Na tym jednak nie kończymy pracy. Zanim taki model znajdzie praktyczne zastosowanie w szpitalach na całym świecie, muszą zostać przeprowadzone próby kliniczne i o na różnych populacjach pacjentów, musimy także ocenić skuteczność modelu na danych pochodzących z innych aparatów mammograficznych. Niejednokrotnie informowaliśmy o systemach SI radzących sobie w pewnych zadaniach lepiej od lekarzy. Skąd się bierze ta przewaga sztucznej inteligencji? Warto powiedzieć, że to „potencjalna” przewaga. Raczej patrzymy na to jako na wsparcie i usprawnienie procesów diagnostycznych lekarzy. To potencjalne usprawnienie bierze się kilku źródeł: po pierwsze, w procesie uczenia się algorytm może przeanalizować dużo więcej przypadków niż pojedynczy lekarz w procesie nauki (z drugiej strony ludzie wyciągają wnioski szybciej – maszyna potrzebuje więcej przykładów). Co więcej automat nie ma skłonności do zaspokojenia swoich poszukiwań jednym „znaleziskiem” i jest mniejsze ryzyko, że umknie mu inne, często ważniejsze. Wreszcie, system sztucznej inteligencji pozwala na „nastrojenie” go na pożądany przez daną placówkę medyczną poziom czułości i swoistości. « powrót do artykułu
- 9 odpowiedzi
-
- algorytm
- sztuczna inteligencja
-
(i 3 więcej)
Oznaczone tagami:
-
W książce "Sztuczna inteligencja. Co każdy powinien wiedzieć" Jerry Kaplan analizuje złożone problemy dotyczące sztucznej inteligencji, posługując się jasnym, nietechnicznym językiem. Zastanawia się: • Czy maszyny naprawdę mogą przewyższyć ludzką inteligencję? • Jak sztuczna inteligencja wpłynie na nasze miejsca pracy i dochody? • Czy robot może świadomie popełnić przestępstwo? • Czy maszyna może być świadoma albo posiadać wolną wolę? Wiele systemów sztucznej inteligencji uczy się teraz z doświadczenia i podejmuje działania wykraczające poza zakres tego, do czego zostały pierwotnie zaprogramowane. W związku z tym rodzą się kłopotliwe pytania, na które społeczeństwo musi znaleźć odpowiedź. • Czy naszemu osobistemu robotowi należy pozwolić stać za nas w kolejce albo zmusić go do zeznawania przeciwko nam w sądzie? • Czy tylko my ponosimy wyłączną odpowiedzialność za wszystkie jego działania? • Jeśli załadowanie umysłu do maszyny okaże się możliwe, czy to nadal będziemy my? Odpowiedzi mogą zaskakiwać.
