Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' promieniowanie X' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 1 wynik

  1. Po raz pierwszy w historii udało się zarejestrować sygnaturę pojedynczego atomu w zakresie promieniowania rentgenowskiego. Osiągnięcie, którego autorami są naukowcy z Ohio University, Argonne National Laboratory i University of Illinois-Chicago, może zrewolucjonizować sposób, w jaki identyfikowane są materiały i wykrywane pierwiastki. Promieniowanie rentgenowskie ma wiele zastosowań. Od obrazowania medycznego po systemy bezpieczeństwa na lotniskach. W generator tego typu promieniowania został też wyposażony łazik Curiosity, który za jego pomocą bada skład marsjańskich skał. Identyfikacja materiałów w próbce to jedno z ważnych zastosowań promieniowania rentgenowskiego. Przez lata, dzięki rozwojowi technologicznemu, ilość materiału wymagana do przeprowadzenia skutecznej identyfikacji ciągle się zmniejszała. Obecnie możemy w ten sposób identyfikować próbki zawierające zaledwie attogram materiału. To około 10 000 atomów. Potrzebujemy ich tak wiele, gdyż sygnał generowany przez pojedynczy atom jest niezwykle słaby. Tymczasem naukowcy od dawna marzyli o możliwości identyfikowania pojedynczego atomu tą metodą. Atomy można obrazować za pomocą skaningowych mikroskopów elektronowych, ale bez promieniowania rentgenowskiego nie jesteśmy w stanie powiedzieć, z jakich atomów składa się materiał. Teraz możemy wykrywać konkretne atomy i jednocześnie badać ich stan, mówi profesor Saw Wai Hla, który kierował badaniami. Gdy już jesteśmy w stanie to zrobić, możemy identyfikować materiał na poziomie pojedynczego atomu. To będzie miało olbrzymi wpływ na nauki biologiczne i medyczne, być może nawet pozwoli na znalezienie lekarstw na różne choroby. To odkrycie zmieni świat, dodaje uczony. Podczas eksperymentów naukowcy postanowili wykryć pojedynczy atom żelaza oraz pojedynczy atom terbu, które znajdowały się w molekułach. Żeby zidentyfikować poszczególne atomy badacze wyposażyli konwencjonalny detektor w wyspecjalizowaną końcówkę z metalu, którą umieścili niezwykle blisko badanej próbki, by zarejestrować elektrony wzbudzone za pomocą promieniowania rentgenowskiego. Wykorzystali więc znaną technikę synchrotronowej rentgenowskiej skaningowej mikroskopii tunelowej. Atom jest identyfikowany dzięki fotoabsorpcji elektronów niewalencyjnych, które wraz z jądrem atomu tworzą tzw. rdzeń atomowy. Jak mówi profesor Hla, spektrum tym elektronów jest unikatowe, co pozwala na identyfikację poszczególnych atomów. Wykorzystanie promieniowania rentgenowskiego do wykrywania i charakteryzowania poszczególnych atomów może zrewolucjonizować badania i doprowadzić do pojawienia się nowych technologi w dziedzinach kwantowych informacji, wykrywania pierwiastków śladowych w środowisku czy w badaniach medycznych. Otwiera to też drogę do tworzenia nowych materiałów na potrzeby instrumentów medycznych, dodaje doktorant Tolulope Michael Ajayi. Drugim, obok możliwości identyfikowania pojedynczego atomu, z celów badań jest wykorzystanie tej techniki do określenia wpływu otoczenia na pojedynczy atom pierwiastków ziem rzadkich. Porównując stany chemiczne wykrytego przez nas atomu żelaza i atomu terbu znajdujących się w ich molekułach, stwierdziliśmy, że atom terbu – pierwiastka ziem rzadkich – jest raczej izolowany i nie zmienia swojego stanu chemicznego, a atom żelaza wchodzi w silne interakcje z otoczeniem, informuje profesor Hla. Możliwość prowadzenia takich badań pozwoli nam na manipulowanie materiałami tak, by lepiej spełniały stawiane przed nimi zadania. « powrót do artykułu
×
×
  • Dodaj nową pozycję...