Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' ogniwo fotowoltaiczne' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 2 wyniki

  1. Krzem, który jest standardowo wykorzystywany do wytwarzania ogniw słonecznych, jest drogi w pozyskiwaniu i oczyszczaniu. Alternatywną dla niego mogą być znacznie tańsze perowskity, a budowane z nich ogniwa słoneczne już teraz są bardziej wydajne od tych krzemowych. Naukowcy z University of Rochester poinformowali, że ich wydajność można zwiększyć ponad dwukrotnie. Grupa profesora Chunleia Guo zauważyła, że jeśli w ogniwach perowskitowych w roli substratu użyjemy metalu lub naprzemiennie ułożonych warstw metalu i dielektryka – zamiast standardowo używanego szkła – to wydajność takiego ogniwa wzrośnie aż o 250%. To olbrzymi postęp, gdyż już w tej chwili perowskitowe ogniwa słoneczne charakteryzują się wydajnością przekraczającą 30%. Nikt dotychczas nie zaobserwował takiego zjawiska. Gdy pod perowskit wsadziliśmy metal nagle doszło do gwałtownej zmiany interakcji elektronów w materiale. Wykorzystaliśmy więc metodę fizyczną do wywołania tej interakcji, mówi Guo. Kawałek metalu może tutaj wykonać tyle roboty, co złożone prace z dziedziny inżynierii chemicznej, cieszy się uczony. Aby ogniwa słoneczne działały, fotony ze Słońca muszą wzbudzić elektrony w materiale ogniwa fotowoltaicznego, które w wyniku tego opuszczą swoje dotychczasowe miejsca i wygenerują prąd. Idealnie byłoby, gdyby do budowy ogniw użyć materiału, w którym wzbudzone elektrony są bardzo słabo wciągane z powrotem na swoje miejsca. Zespół Guo wykazał, że w perowskitach takiej rekombinacji, powrotu wzbudzonych elektronów na miejsce, można uniknąć łącząc perowskit z metalem lub metamateriałem zbudowanym z naprzemiennych warstw srebra i tlenku aluminium. Wówczas, dzięki wielu zdumiewającym zjawiskom fizycznym ma miejsce znaczna redukcja liczby rekombinacji. Jak wyjaśnia Guo, warstwa metalu działa jak lustro tworzące odwrócone obrazy par dziura-elektron, zmniejszając prawdopodobieństwo rekombinacji elektronów z dziurami. Za pomocą prostego miernika zaobserwowano, że wydajność perowskitowego ogniwa zwiększyła się o 250%. Perowskity to niezwykle obiecująca grupa materiałów pod względem produkcji energii elektrycznej ze Słońca. Mają jednak poważną wadę. Ulegają szybkiej degradacji pod wpływem wysokiej temperatury i ich wydajność drastycznie spada. Jednak i na tym polu widoczny jest wyraźny postęp. Gdy rozpoczynano badania perowskitów pod kątem ich wykorzystania do pozyskiwania energii elektrycznej, perowskitowe ogniwa pracowały od kilku minut do kilku godzin. W ubiegłym roku w US National Renewable Energy Laboratory powstało perowskitowe ogniwo fotowoltaiczne, które po 2400 godzinach nieprzerwanej pracy w temperaturze 55 stopni Celsjusza zachowało 87% swojej pierwotnej sprawności. Czas pracy ogniw perowskitowych może już teraz sięgać wielu miesięcy. A ich wydajność właśnie zwiększono o 250%. Solar Energy Technologies Office, działające w ramach amerykańskiego Departamentu Energii, stawia sobie za cel opracowanie perowskitowego ogniwa, które będzie działało przez co najmniej 20, a idealnie ponad 30 lat. « powrót do artykułu
  2. Wkrótce możemy zatęsknić do czasów, gdy naszej prywatności zagrażały coraz bardziej rozpowszechnione systemy telewizji przemysłowej. Na University of Michigan powstało urządzenie, które pozwoli na umieszczenie urządzeń rejestrujących obrazy w niemal dowolnej lokalizacji. Co gorsza, urządzenia takie mogą być praktycznie niewidoczne. Czujniki obrazu w kamerach czy aparatach działają dzięki zamianie padającego nań światła na sygnał elektryczny. Podobnie działają ogniwa fotowoltaiczne, zamieniające światło słoneczne w elektryczność. Inżynierowie z University of Michigan połączyli właśnie oba urządzenia w jedno, tworząc czujnik obrazu zdolny do pracy z prędkością 15 klatek na sekundę, który jest zasilany padającym nań światłem. Specjaliści z Ann Arbor nie są pierwszymi, którzy próbowali tego dokonać. Dotychczas jednak podobne prace szły w dwóch kierunkach. Jeden z pomysłów polegał na wypełnieniu części czujnika obrazu elementami fotowoltaicznymi, co zmniejszało ilość światła, z którego można było rejestrować obraz. Drugi zaś wykorzystywał technologię przełączania się poszczególnych pikseli czujnika pomiędzy stanami, w których przetwarzały światło na obraz i na energię. Takie rozwiązanie jest złożone i zmniejsza tempo pracy rejestratora obrazu. Profesor Euisik Yoon i doktor Sung-Yun Park wpadli na zupełnie inny pomysł. Zauważyli, że olbrzymia liczba fotonów przelatuje przez diodę fotodetektora odpowiedzialną za tworzenie obrazu. Umieścili więc pod nią drugą diodę, tym taką, która działa jak ogniwo fotowoltaiczne. To nawet nie jest recykling. To jak zbieranie śmieci. Przechwytujemy darmową energię, mówi Yoon. Jako, że dioda do fotowoltaiki jest umieszczona poniżej, cały obszar czujnika jest dostępny dla modułu tworzącego obraz. Jednocześnie zaś zapewnia zasilanie dzięki fotonom, które nie trafiły do diody umieszczonej powyżej. Pomimo tego, że całe urządzenie zostało zbudowane za pomocą standardowych technik CMOS, to ma inną strukturę i inne właściwości elektryczne niż typowy układ do przechwytywania obrazu. Najbardziej oczywistą różnicą jest obecność drugiej diody. Ponadto, aby diody do tworzenia obrazu i do pozyskiwania energii mogły działać jednocześnie urządzenie zostało zaprojektowane tak, by korzystało z dziur elektronowych w krzemie. Tam, gdzie brakuje elektronu, taka dziura działa jak dodatni nośnik ładunku elektrycznego. Dziury poruszają się wolniej od elektronów, jednak na tyle szybko, że nie zakłócają procesu przechwytywania obrazu. Wynikiem prac zespołu Yoona jest układ scalony z pikselami o szerokości 5 mikrometrów, który w słoneczny dzień (60 000 luksów) zapewnia sobie wystarczającą ilość energii by pracować z prędkością 15 klatek na sekundę, natomiast standardowe światło dzienne wystarcza mu do pracy w tempie 7,5 klatki na sekundę. « powrót do artykułu
×
×
  • Dodaj nową pozycję...