Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' heliosfera' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 3 wyniki

  1. W próbkach pobranych z dna Pacyfiku występuje niespodziewanie dużo berylu-10, informują naukowcy z Niemiec i Australii. Ten rzadki izotop powstaje w atmosferze pod wpływem promieniowania kosmicznego i dostarcza cennych informacji na temat geologicznej historii Ziemi. Jego większa od spodziewanej akumulacja na dnie oceanu może mieć związek ze zmianami prądów lub zjawiskami astrofizycznymi, które miały miejsce około 10 milionów lat temu. Nadmiarowy beryl może być znacznikiem, dzięki któremu będziemy mogli bardziej precyzyjnie opisać historię geologiczną naszej planety. Izotopy promieniotwórcze, jak beryl-10, są wykorzystywane do datowania. Najbardziej znanym z nich jest węgiel-14. Jednak metoda radiowęglowa może być wykorzystywana do datowania próbek nie starszych niż około 50 tysięcy lat. Aby datować starsze próbki potrzebujmy innych izotopów, takich jakich beryl-10. Powstaje on w górnych partiach atmosfery, gdy promienie kosmiczne wchodzą w interakcje z tlenem i azotem. Później wraz z deszczem 10Be opada na powierzchnię planety i może akumulować się na dnie oceanów. Czas jego połowicznego rozpadu wynosi 1,4 miliona lat, co pozwala na datowanie próbek starszych niż 10 milionów lat. Niedawno naukowcy z Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Uniwersytetu Technicznego w Dreźnie i Austalijskiego Uniwersytetu Narodowego prowadzili szczegółowe analizy próbek z dna Pacyfiku. Wykorzystali akceleratorową spektrometrię mas do oceny zawartości berylu-10. A gdy sprawdzili uzyskane wyniki, czekała ich niespodzianka. W próbce sprzed około 10 milionów lat znaleźliśmy niemal dwukrotnie więcej 10Be niż się spodziewaliśmy. To nieznana dotychczas anomalia, mówi doktor Dominik Koll z HZDR. Uczeni, by upewnić się, że nie doszło do zanieczyszczenia, poddali podobne analizie inne próbki i uzyskali takie same wyniki. Anomalia taka wymaga wyjaśnienia. Doktor Koll ma dwie hipotezy. Jedna z nich związana jest z cyrkulacją oceaniczną wokół Antarktyki. Przypuszcza się, że 10–12 milionów lat temu doszło tam do znacznych zmian rozkładu prądów morskich. To mogło spowodować, że przez pewien czas dystrybucja 10Be była nierównomierna i spowodowało to szczególnie dużą koncentrację tego pierwiastka na Pacyfiku. Druga z hipotez mówi, że przed 10 milionami lat promieniowanie kosmiczne stało się bardziej intensywne, na przykład w wyniku wybuchu pobliskiej supernowej. Ewentualnie Układ Słoneczny mógł przejściowo utracić swoją warstwę ochronną – heliosferę – na przykład w wyniku kolizji z gęstą chmurą międzygwiezdną. Jedynie dodatkowe pomiary berylu pokażą, czy anomalia spowodowana jest zmianą rozkładu prądów oceanicznych czy wydarzeniem astrofizycznym, mówi Koll. Dlatego chcemy w przyszłości przeanalizować więcej próbek i mamy nadzieję, że inne zespoły naukowe zrobią to samo, dodaje. Jeśli do podobnej anomalii doszło na całej planecie, będzie to oznaczało, że jest ona skutkiem tego, co stało się w przestrzeni kosmicznej. Jeśli występuje tylko lokalnie, prawdopodobnie winna jest zmiana prądów oceanicznych. Zauważony właśnie nadmiar berylu może być niezwykle przydatny w datowaniu geologicznym. Gdy bowiem porównuje się różne zestawy danych głównym problemem konieczność istnienia uniwersalnych znaczników czasowych, które pozwolą zsynchronizować dane. Dla okresów liczonych w milionach lat takie kosmogeniczne znaczniki jeszcze nie istnieją. Ta anomalia może być pierwszym z nich, wyjaśnia Koll. « powrót do artykułu
  2. Kolejne badania heliosfery przynoszą więcej pytań niż odpowiedzi i pokazują, że jest to znacznie bardziej złożony obszar niż mogło się wydawać. Przed rokiem, 5 listopada, Voyager 2 wyleciał poza heliosferę. Kilka lat wcześniej w heliosferze znalazł się Voyager 1. O ile jednak Voyager 1 leciał przez północną część heliosfery, Voyager 2 badał jej część południową. Teraz na łamach Nature Astronomy opublikowano pięć artykułów opisujących badania, jakie przeprowadzono po wleceniu Voyagera 2 w przestrzeń międzygwiezdną. Badania przyniosły wiele niespodzianek. Okazało się, na przykład, że Voyager 2 wyleciał poza południową część heliosfery gdy znalazł się w odległości 119 jednostek astronomicznych od Słońca. W przypadku Voyagera 1 było to 121,6 j.a. To podobieństwo odległości heliosfery od naszej gwiazdy zaskoczyło naukowców. To bardzo dziwne, gdyż przelot Voyagera 2 odbył się w czasie słonecznego minimum, gdy aktywność Słońca jest najmniejsza, a Voyager 1 leciał w czasie maksimum. Spodziewaliśmy się, że będziemy mieli do czynienia z wyraźną różnicą, mówi Stamatios Krimigis z Uniwersytetu Johnsa Hopkinsa, autor jednego z artykułów. Heliosfera zmienia swoje rozmiary w zależności od aktywności Słońca, ponadto powinny występować też krótkoterminowe zmiany powodowane takimi wydarzeniami jak koronalne wyrzuty masy. Intrygujące okazały się też pomiary pola magnetycznego przestrzeni międzygwiezdnej. Zanim w roku 2012 Voyager 1 wyleciał w przestrzeń międzygwiezdną, naukowcy spodziewali się zaobserwować znaczące różnice pomiędzy kierunkiem pola magnetycznego wewnątrz i na zewnątrz heliosfery. Jednak Voyager 1 zanotował, że kierunki pola magnetycznego przestrzeni międzygwiezdnej oraz pola magnetycznego wewnątrz heliosfery są w dużej mierze zgodne. Takie same dane przekazał Voyager 2, wiemy więc, że to prawdziwe zjawisko, a nie przypadkowa zbieżność. Musimy zrozumieć, dlaczego pole magnetyczne nie ulega zmianie, stwierdził Leonard Burlada z Goddard Space Flight Center. Uważa on, że musi istnieć jakiś proces, który powoduje tę zgodność, a którego nie rozumiemy. Istnieją też interesujące różnice w pomiarach obu sond. Voyager 1 gdy zbliżał się do heliopauzy dwukrotnie wykrył cząstki pochodzące z przestrzeni międzygwiezdnej, a naukowcy uznali, że cząstki takie czasem przebijają się przez heliopauzę. Z kolei Voyager 2 przez jakiś czas po opuszczeniu heliosfery wykrywał cząstki pochodzące ze Słońca. Naukowcy sądzą, że ta różnica może mieć coś wspólnego z geometrią heliosfery, gdyż oba pojazdy opuściły ją w różnych miejscach, jednak nie wiedzą, skąd taka różnica. Istnieją też inne różnice. Na przykład Voyager 1 notował, że prędkość wiatru słonecznego spadła niemal do zera przy heliopauzie. Tymczasem Voyager 2 rejestrował niemal stałą, wysoką prędkość wiatru przez całą podróż. Ponadto, mimo że oba pojazdy minęły heliopauzę w czasie krótszym niż 24 godziny, to Voyager 2 przekazał dane, które wskazują, że jest ona bardziej gładsza i cieńsza niż wynika to z danych zarejestrowanych przez Voyagera 1. Powoli misja obu Voyagerów zbliża się do końca. Każdy z nich jest zasilany przez radioizotopowy generator termoelektryczny, w którym ciepło generowane przez rozpad plutonu-238 zostaje zamienione w energię elektryczną. Z każdą chwilę rozpada się coraz mniej i mniej radioaktywnego pierwiastka. Dlatego też specjaliści już od dłuższego czasu robią co mogą, by zaoszczędzić jak najwięcej energii. Wyłączają po prostu kolejne urządzenia zużywające prąd. Obecnie Voyager 2 korzysta z 5 z oryginalnych 10 urządzeń naukowych, a Voyager 1 ma do dyspozycji 4 urządzenia, gdyż jego spektrometr plazmowy zepsuł się już w 1980 roku. Powoli jednak kończą się możliwości dalszego oszczędzania energii, więc Voyagery przestaną pracować w ciągu mniej więcej 5 lat. W tym jednak czasie naukowcy chcą jak najwięcej wycisnąć z Voyagerów, Maja nadzieję dowiedzieć się jak najwięcej o przestrzeni międzygwiezdnej. Interesuje ich na przykład, jak wygląda pola magnetyczne w większej odległości od heliosfery. Mają nadzieję, że uda się przeprowadzić pomiary przestrzeni międzygwiezdnej, które nie będą zakłócane przez sąsiedztwo heliosfery. Jednak na wiele innych pytań nie poznamy odpowiedzi, jeśli nie wyślemy kolejnych misji. Wciąż nie wiadomo, jaki jest kształt heliosfery. Czy jest ona sferą czy też posiada ogon podobny do komety. Oba Voyagery wyleciały bowiem „z przodu” heliosfery, z kierunku zgodnego z ruchem Układu Słonecznego wokół centrum Drogi Mlecznej. Część specjalistów chciałaby wysłać kolejne pojazdy w przeciwnym kierunku. Jeśli jednak heliosfera nie ma kształtu sfery, a posiada za to „ogon” to podróż w przeciwnym kierunku może oznaczać konieczność przelecenia setek jednostek astronomicznych przed dotarciem do przestrzeni międzygwiezdnej. Voyager 1 znajduje się obecnie w odległości 148, a Voyager 2 w odległości 122,4 j.a. od Ziemi. Oba pojazdy dzieli 160 j.a. Kolejnym najbardziej odległym od nasze planety pojazdem jest sonda New Horizons, która znajduje się odległości nieco ponad 46 j.a. od naszej planety. New Horizons nie będzie wlatywała w przestrzeń międzygwiezdną. Jej zadaniem są badania Plutona i Pasa Kuipera. Prawdopodobnie paliwo wyczerpie się jej w odległości 90 j.a. od Ziemi. « powrót do artykułu
  3. Voyager 2 wykrył wzrost promieniowania kosmicznego pochodzącego spoza Układu Słonecznego. To oznacza, że sonda zbliża się do granic Układu Słonecznego. Wystrzelony w 1977 roku Voyager 2 znajduje się w odległości ponad 118 jednostek astronomicznych (17,7 miliarda kilometrów) od Ziemi. Od 11 lat sonda podróżuje przez najbardziej zewnętrzne regiony Układu Słonecznego. Dotarła do heliopauzy, a gdy ją opuści stanie się drugim, po Voyagerze 1, stworzonym przez człowieka pojazdem, który trafi do przestrzeni międzygwiezdnej. Jak informuje NASA, od końca sierpnia bieżącego roku Cosmic Ray Subsystem Voyager 2 zanotował 5-procentowy wzrost promieniowania kosmicznego. Podobne dane przekazał Low-Energy Charged Particle. We wrześniu 2013 roku NASA ostatecznie potwierdziła, że Voyager 1 znalazł się w przestrzeni międzygwiezdnej. Jak wówczas informowaliśmy, dane wykazały, że sonda weszła w przestrzeń międzygwiezdną 25 sierpnia 2012 roku. Trzy miesiące wcześniej Voyager 1 zarejestrował dane podobne do tych, jakie obecnie zarejestrowały instrumenty Voyagera 2. Trzeba jednak wziąć pod uwagę, że Voyater 2 znajduje się w innym miejscu niż Voyager 1, nie wiadomo więc, kiedy opuści heliopauzę. Istotny jest też fakt, że Voyager 2 zbliża się do heliopauzy 6 lat po Voyagerze 1, gdyż heliopauza porusza się w przód i w tył w 11-cyklu aktywności Słońca. Bez wątpienia obserwujemy zmianę środowiska wokół Voyagera 2. W najbliższych miesiącach wiele się dowiemy, ale wciąż nie wiemy, kiedy pojazd dotrze do heliopauzy. Jedyne, co mogę z pewnością stwierdzić to fakt, że jeszcze do niej nie dotarł, mówi Ed Stone z Caltechu, który pracuje przy misji Voyagera. « powrót do artykułu
×
×
  • Dodaj nową pozycję...