Znajdź zawartość
Wyświetlanie wyników dla tagów ' ewolucja galaktyk' .
Znaleziono 2 wyniki
-
Węgiel i inne pierwiastki nie dryfują bezwładnie w przestrzeni kosmicznej, zauważyli naukowcy z USA i Kanady. Okazuje się, że w aktywnych galaktykach – takich jak Droga Mleczna – w których wciąż powstają nowe gwiazdy, pierwiastki są transportowane w formie wielkich strumieni. Krążą w galaktyce, wychodzą poza nią i wracają, zanim w wyniku oddziaływania grawitacji i innych sił nie utworzą planet, gwiazd, księżyców czy asteroid. To zaś oznacza, że pierwiastki w naszych organizmach, zanim do nich trafiły, mogły spędzić sporo czasu w przestrzeni międzygalaktycznej, wchodząc w skład ośrodka okołogalaktycznego (CGM). Pomyślmy o ośrodku okołogalaktycznym jak o wielkiej stacji kolejowej. Bez przerwy wypycha materiał na zewnątrz i go z powrotem zasysa. Ciężkie pierwiastki, które powstały w gwiazdach, są wypychane z ich galaktyk macierzystych w wyniku eksplozji supernowych i trafiają do przestrzeni międzygalaktycznej, a następnie są z powrotem wciągane do galaktyki, gdzie biorą udział w tworzeniu gwiazd i planet, mówi doktorantka Samantha Garza z University of Washington, jedna z autorek pracy opublikowanej na łamach Astrophysical Journal Letters. Naukowcy zauważają, że odkrycie tego procesu ma olbrzymie znaczenie dla naszego zrozumienia procesu ewolucji galaktyk. Jego implikacje dla ewolucji oraz natury dostępnych rezerwuarów węgla są ekscytujące. Ten sam węgiel, który tworzy nasze ciała, prawdopodobnie spędził dużo czasu poza galaktyką, mówi profesor Jessica Werk. W 2011 roku po raz pierwszy potwierdzono hipotezę, że aktywne galaktyki są otoczone przez ośrodek okołogalatyczny, olbrzymią chmurę materiału zawierającą gorące gazy. Teraz Garza, Werk i ich współpracownicy odkryli, że w ośrodku tym krążą również pierwiastki powstające w niższych temperaturach, takie jak węgiel. Możemy potwierdzić, że ośrodek okołogalaktyczny działa jak gigantyczny rezerwuar zarówno węgla jak i tlenu. I, przynajmniej w odniesieniu do galaktyk tworzących gwiazdy, uważamy, że materiał ten wraca do galaktyki w procesie recyklingu, stwierdza Garza. Jedna z postawionych przez naukowców hipotez mówi, że to spowolnienie lub zaprzestanie tego recyklingu pomiędzy galaktyką a ośrodkiem okołogalaktycznym jest odpowiedzialne za przerwanie procesu tworzenia się nowych gwiazd. Badacze wykorzystali instrument Cosmic Origin Spectrograph, który znajduje się na Teleskopie Hubble'a, do obserwacji, w jaki sposób ośrodek okołogalaktyczny 11 galaktyk tworzących gwiazdy wpływa na światło z 9 odległych kwazarów. W ten sposób odkryli, że część tego światła je pochłaniana przez węgiel znajdujący się w medium. I że tego węgla jest dużo. Okazało się również, że węgiel ten można wykryć w odległości nawet 400 tysięcy lat świetlnych od macierzystej galaktyki. Teraz celem naukowców jest opisanie innych pierwiastków wchodzących w skład ośrodka okołogalaktycznego, określenie różnic pomiędzy składem ośrodka wokół poszczególnych galaktyk i porównanie tego składu pomiędzy galaktykami, w których wciąż powstają gwiazdy, a tymi, w którym proces formowania gwiazd w dużej mierze się zatrzymał. « powrót do artykułu
-
- ośrodek okołogalaktyczny
- galaktyka
-
(i 2 więcej)
Oznaczone tagami:
-
Międzynarodowy zespół naukowców, w tym dwoje naukowców z NCBJ - Katarzyna Małek i William Pearson, rzucił nieco światła na złożone procesy fizyczne związane z wytwarzaniem pyłu, metali i gwiazd w ewolucji galaktyk. Badacze przeanalizowali dużą próbkę odległych pyłowych galaktyk, wykrytych za pomocą ALMA. Badanie, opublikowane w Astronomy & Astrophysics, ujednoliciło metody obserwacyjne i teoretyczne, znajdując dowody na szybki wzrost pyłu w młodych, ale już bogatych w metale galaktykach w odległym wszechświecie. Dwa miliardy lat po Wielkim Wybuchu wszechświat był wciąż bardzo młody. Jednak już powstały w nim tysiące ogromnych galaktyk, bogatych w gwiazdy i pył. Międzynarodowe badanie, prowadzone równocześnie przez Wyższą Międzynarodową Szkołę Badań Zaawansowanych (SISSA) w Trieście oraz Narodowe Centrum Badań Jądrowych z udziałem międzynarodowego zespołu naukowców, wyjaśnia teraz, jak to było możliwe. Naukowcy połączyli metody obserwacyjne i teoretyczne, aby zidentyfikować procesy fizyczne leżące u podstaw ich ewolucji i po raz pierwszy znaleźli dowody na szybki wzrost zawartości pyłu w tych galaktykach, spowodowany wysokim stężeniem metali w odległym wszechświecie. Badanie, opublikowane w czasopiśmie Astronomy & Astrophysics, przedstawia nowe podejście do badania fazy ewolucyjnej masywnych obiektów. Odległe galaktyki, istniejące w bardzo wczesnym wszechświecie, ale już masywne i bardzo aktywnie tworzące nowe gwiazdy, stanowią od momentu ich odkrycia 20 lat temu prawdziwe wyzwanie dla astronomów. Z jednej strony są one trudne do wykrycia, ponieważ znajdują się w gęstych obszarach odległego wszechświata i zawierają cząstki pyłów, które pochłaniają większość światła optycznego emitowanego przez młode gwiazdy – wyjaśnia dr Drako Donevski, stypendysta SISSA i główny autor badania. Z drugiej strony wiele z tych pyłowych "olbrzymów" powstało w czasach, gdy wszechświat był bardzo młody - miał mniej niż 1 miliard lat - i nadal pozostaje zagadką pytanie, jak tak duża ilość pyłu mogła zostać wyprodukowana tak wcześnie we wszechświecie. Badanie tych egzotycznych obiektów jest teraz możliwe dzięki Atacama Large Millimeter/submillimeter Array (ALMA). Interferometr składający się z 66 teleskopów umieszczony jest na pustyni Atakama w północnym Chile i jest w stanie wykryć światło podczerwone, które przenika przez pyłowe chmury, ujawniając obecność nowo tworzących się gwiazd. Jednak pochodzenie dużej ilości pyłu we wczesnym czasie kosmicznym wciąż pozostaje otwartą kwestią dla astronomów. Przez wiele lat naukowcy sądzili, że powstawanie pyłu kosmicznego jest spowodowane wyłącznie eksplozjami supernowych. Jednak ostatnie prace teoretyczne sugerują, że zawartość pyłu może również wzrastać w wyniku zderzeń cząstek zimnego, bogatego w metale gazu, który wypełnia galaktyki- wyjaśnia naukowiec. Międzynarodowy zespół uczonych z instytucji w Europie, USA, Kanadzie i RPA, kierowany przez dra Donevskiego, połączył metody obserwacyjne i teoretyczne, aby zbadać 300 odległych zapylonych galaktyk w nadziei, że pomoże to odkryć pochodzenie tych "gigantów". Wyznaczyliśmy właściwości fizyczne naszych galaktyk, stosując specjalną technikę modelowania ich szerokopasmowych widm energetycznych - uzupełnia dr hab. Katarzyna Małek, adiunkt w Zakładzie Astrofizyki Narodowego Centrum Badań Jądrowych. Jest to istotne źródło informacji o naturze galaktyk, ponieważ wiele złożonych procesów fizycznych, które w nich zachodzą, pozostawia swój ślad w ich widmie. Widmo energetyczne, czyli zależność wypromieniowywanej energii od długości fali, to swoiste DNA galaktyki. Modelowanie widm energetycznych pomaga nam oszacować takie wielkości fizyczne, jak masa pyłu lub masa gwiazd w galaktyce. Dzięki analizie widm szerokopasmowych udało nam się zidentyfikować dwie różne populacje galaktyk w naszej próbce: typowe galaktyki aktywne gwiazdotwórczo - tak zwane galaktyki ciągu głównego, i ekstremalne obiekty, w których zachodzą wyjątkowo intensywne procesy gwiazdotwórcze (ang. starburst galaxies). Taka ekstremalna galaktyka tworzy rocznie gwiazdy o łącznej masie nawet 10-100 mas Słońca. Znaleźliśmy ogromną ilość masy pyłu w większości naszych galaktyk – uzupełnia dr Donevski. Nasze szacunki pokazały, że wybuchy supernowych nie mogą być odpowiedzialne za to wszystko, a część musiała powstać w wyniku zderzeń cząstek w środowisku bogatym w gazowe metale wokół masywnych gwiazd, jak wcześniej przewidywały to modele teoretyczne. To pierwszy przypadek, kiedy dane obserwacyjne potwierdzają istnienie obu mechanizmów produkcji. Naukowcy przyjrzeli się również zmianom w czasie stosunku masy pyłu do masy gwiazd, aby zbadać, jak skutecznie galaktyki tworzą i niszczą pył podczas swojej ewolucji. To pozwoliło nam zidentyfikować cykl życia pyłu w dwóch różnych populacjach galaktyk: normalnych, oraz bardziej ekstremalnych, szybko ewoluujących galaktykach gwiazdotwórczych - powiedziała Lara Pantoni, doktorantka w SISSA, która opracowała model analityczny służący do interpretacji danych i wykazujący ogromny potencjał w opisywaniu różnic w tych dwóch grupach obserwowanych galaktyk. Co ciekawe, wykazaliśmy również, że bez względu na odległość, masę lub rozmiar gwiazd, zwarte galaktyki gwiazdotwórcze zawsze mają wyższy stosunek masy pyłu do masy gwiazdy niż zwykłe galaktyki. Aby w pełni ocenić wyniki obserwacji, zespół astronomów skonfrontował także swoje dane z najnowszymi modelami i symulacjami galaktyk. Wykorzystano symulację kosmologiczną SIMBA, nowy zestaw, który symuluje powstawanie i ewolucję milionów galaktyk od początku wszechświata do chwili obecnej, śledząc wszystkie ich właściwości fizyczne, w tym masę pyłu. Do tej pory modele teoretyczne miały problemy z jednoczesnym dopasowaniem zawartości pyłu w galaktykach i właściwości gwiazd. Jednak nasz nowy pakiet symulacji kosmologicznych SIMBA był w stanie odtworzyć większość zaobserwowanych danych - wyjaśnia Desika Narayanan, profesor astronomii na Uniwersytecie Florydy i członek instytutu DAWN w Kopenhadze. Z naszych badań wynika, że produkcja pyłu w "gigantach" jest zdominowana przez bardzo szybki wzrost ilości cząstek w wyniku ich zderzeń z gazem - podsumowuje dr Donevski. Stanowi to pierwszy dowód na poparcie tezy, że powstawanie pyłu zachodzi zarówno podczas śmierci gwiazd, jak i w przestrzeni między tymi masywnymi gwiazdami, jak zakładają badania teoretyczne. Co więcej, nasza praca oferuje nowe, mieszane, podejście do badania ewolucji masywnych obiektów w odległym wszechświecie, które będą testowane za pomocą przyszłych teleskopów kosmicznych, takich jak Kosmiczny Teleskop Jamesa Webba. « powrót do artykułu
-
- pyłowy gigant
- ewolucja galaktyk
-
(i 2 więcej)
Oznaczone tagami: