Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' Tomasz Rozwadowski' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 1 wynik

  1. Ujemne ciśnienie rządzi nie tylko Wszechświatem czy kwantową próżnią. Zjawisko to, choć odmiennej natury, pojawia się między innymi w ciekłych kryształach wypełniających nanopory. W Instytucie Fizyki Jądrowej PAN w Krakowie zaprezentowano metodę, która po raz pierwszy pozwoliła oszacować wielkość ujemnego ciśnienia w przestrzennie ograniczonych układach ciekłokrystalicznych. Na pierwszy rzut oka ujemne ciśnienie wydaje się zjawiskiem egzotycznym. W rzeczywistości jest powszechne w przyrodzie, na dodatek w wielu skalach. W skali Wszechświata stała kosmologiczna odpowiada za przyspieszanie ekspansji czasoprzestrzeni. W świecie roślin przyciągające siły międzycząsteczkowe (a nie: rozpychające ruchy termiczne) gwarantują dopływ wody w szczytowe partie każdego drzewa wyższego niż dziesięć metrów. W skali kwantów ciśnienie wirtualnych cząstek fałszywej próżni prowadzi do powstania siły przyciągającej, pojawiającej się na przykład między dwiema równoległymi, metalowymi płytami (słynny efekt Casimira). Fakt, że w ciekłych kryształach wypełniających nanopory pojawia się ujemne ciśnienie, był znany już wcześniej. Jednak nie było wiadomo, jak zmierzyć wartość tego ciśnienia. My co prawda także nie potrafimy tego zrobić bezpośrednio, ale zaproponowaliśmy metodę, która pozwala to ciśnienie wiarygodnie oszacować - mówi dr Tomasz Rozwadowski z Instytutu Fizyki Jądrowej Polskiej Akademii Nauk (IFJ PAN) w Krakowie, pierwszy autor publikacji w czasopiśmie Journal of Molecular Liquids. Krakowscy fizycy przyglądali się ciekłemu kryształowi znanemu jako 4CFPB, zbudowanemu z cząsteczek długości 1,67 nm przy średnicy molekularnej 0,46 nm. Doświadczenia bez nanoporów, w warunkach normalnego i podwyższonego ciśnienia (do około 3000 atmosfer), przeprowadzono na Uniwersytecie Śląskim w Katowicach. Z kolei układy w krzemowych membranach o nieprzecinających się nanoporach o średnicy 6 oraz 8 nanometrów zbadano na uniwersytecie w Lipsku (Niemcy). Geometria nanoporów powodowała, że mieściło się w nich obok siebie zaledwie kilka molekuł ciekłego kryształu, z długimi osiami ustawionymi wzdłuż ścianek kanalika. W eksperymentach przyglądano się zmianom różnych parametrów ciekłego kryształu (m.in. dyspersji i absorpcji dielektrycznej). Pomiary pozwoliły stwierdzić, że zwiększaniu ciśnienia towarzyszyło spowolnienie ruchów molekularnych. Cząsteczki ciekłego kryształu umieszczone w nanoporach poruszały się jednak tym szybciej, w im węższych kanalikach się znajdowały. Z danych wynikało także, że gęstość cząsteczek ciekłego kryształu rośnie wraz ze zwiększaniem ciśnienia, podczas gdy w nanoporach maleje. Zmieniały się także temperatury, w których ciekły kryształ przechodził z ciekłej fazy izotropowej (z cząsteczkami rozmieszczonymi chaotycznie w przestrzeni) do najprostszej fazy ciekłokrystalicznej (nematycznej; cząsteczki są nadal rozmieszczone chaotycznie, jednak ustawiają się już swoimi długimi osiami w tym samym kierunku), a następnie do szklistej fazy stałej. Gdy ciśnienie rosło, temperatury przejść fazowych wzrastały. W nanoporach – ulegały obniżeniu. Przy zwiększaniu ciśnienia wszystkie badane przez nas parametry ciekłego kryształu zmieniały się odwrotnie niż w nanoporach o malejących średnicach. Sugeruje to, że warunki panujące w nanoporach odpowiadają ciśnieniu obniżonemu. A ponieważ cząsteczki ciekłego kryształu w kanalikach próbują rozpychać ich ścianki, tak jakby się rozprężały, możemy mówić o ciśnieniu ujemnym w stosunku do ciśnienia atmosferycznego, które ścianki ściska - mówi dr Rozwadowski. Zaobserwowane zmiany parametrów fizycznych pozwoliły po raz pierwszy oszacować wartość ujemnego ciśnienia pojawiającego się w ciekłym krysztale wypełniającym nanopory. Liniowy charakter tych zmian sugeruje, że ujemne ciśnienie w nanoporach może sięgać niemal -200 atmosfer. Wartość ta jest o rząd wielkości większa od ujemnego ciśnienia odpowiedzialnego za transport wody w drzewach. Nasze prace mają charakter podstawowy, dostarczają informacji o samej fizyce zjawisk zachodzących w ciekłych kryształach znajdujących się wewnątrz nanoporów o różnych średnicach. Ciekłe kryształy znajdują jednak wiele zastosowań, na przykład w wyświetlaczach, optoelektronice i medycynie, zatem każdy nowy opis, jak substancje te zachowują się w nanoskali w tak specyficznych warunkach przestrzennych może nieść praktyczną informację - zaznacza dr Rozwadowski. Badania nad ciekłymi kryształami w warunkach ograniczenia przestrzennego sfinansowano z grantu SONATA Narodowego Centrum Nauki. « powrót do artykułu
×
×
  • Dodaj nową pozycję...