Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'stała Hubble'a'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 3 results

  1. W 1929 roku Edwin Hubble odkrył, że najbardziej odległe galaktyki oddalają się od Ziemi szybciej, niż galaktyki pobliskie. Tym samym dowiedzieliśmy się, że wszechświat się rozszerza. Jednak tempo jego rozszerzania stanowi jedną z najważniejszych zagadek kosmologicznych. Spór w tej kwestii trwa od dziesięcioleci. Naukowcy, korzystający z różnych, solidnych i wielokrotnie sprawdzonych, metod pomiaru otrzymują dwa różne wyniki. Być może jednak pogodzą ich nowe badania, których autorzy – wykorzystując Teleskop Webba – zmierzyli tempo ucieczki 10 pobliskich galaktyk i uzyskali nową wartość rozszerzania się wszechświata. Tempo rozszerzania się wszechświata – stała Hubble'a – mierzone jest dwiema głównymi metodami. Jedna z nich to pomiar promieniowania mikrofalowego tła, czyli światła, które pozostało z Wielkiego Wybuchu. Badanie tą metodą pokazuje, że wszechświat rozszerza się w tempie 67,4 km/s/Mpc (kilometra na sekundę na megaparsek). Druga metoda wykorzystuje do pomiaru świece standardowe, obiekty o znanej jasności. Im są dalej, tym słabsze dociera z nich światło, co pozwala na pomiary odległości i prędkości oddalania się. Pomiary tą metodą dają wynik 74 km/s/Mpc. Oba wyniki na tyle się różnią, że skłoniły naukowców do przypuszczeń, iż standardowy model kosmologiczny – Lambda-CDM – może wymagać zmiany. Zwraca się uwagę, że jedna z tych metod bada mikrofalowe promieniowanie tła, zatem najwcześniejsze ślady wszechświata, a druga współczesne galaktyki, może więc w międzyczasie doszło do jakiejś istotnej zmiany, której Lambda-CDM nie uwzględnia. Zagadnieniu temu przyjrzała się kosmolog Wendy Freedman z University of Chicago, która specjalizuje się w badaniu tempa rozszerzania wszechświata metodą świec standardowych. Wraz ze swoim zespołem wykorzystała Teleskop Webba do przyjrzenia się 10 pobliskim galaktykom. Naukowcy wykorzystali przy tym trzy różne metody badawcze, które posłużyły im do wzajemnego sprawdzania uzyskanych wyników. W pierwszej z nich do pomiarów użyli cefeid, niezwykle jasnych gwiazd, które regularnie pulsują, zmieniając swoją jasność. Drugą z metod była TRGB (tip of the red giant branch - wierzchołek gałęzi czerwonych olbrzymów), która wykorzystuje fakt, że gwiazdy o niskiej masie osiągają pewną maksymalną jasność. W ostatniej metodzie, JAGB (J-Region Asymptotic Giant Branch), wykorzystano gwiazdy węglowe, których jasność i kolor są stałe w bliskiej podczerwieni. To pierwsze prace, w czasie których użyto wszystkich tych trzech metod do zbadania tych samych galaktyk. Wszystkie trzy metody, po uwzględnieniu marginesu błędu, dały wartość bliższą wartości uzyskiwanej z badania mikrofalowego promieniowania tła. Odległości mierzone metodami TRGB i JAGB zgadzały się z dokładnością do 1%, ale różniły się od odległości z cefeid o 2,5–4 procent. Średnia wartość stałej Hubble'a uzyskana z tych dwóch pierwszych metod wynosi 69,03+/-1,75 km/s/Mpc, czytamy w artykule udostępnionym na łamach arXiv. Również dane z pomiarów cefeid są zbliżone do tych wartości i mieszczą się w marginesach błędu. Pomiary dokonane przez uczonych z Chicago mogą wskazywać, że nie potrzebujemy poprawek do modelu kosmologicznego, a różnica w uzyskiwanych dotychczas wynikach to skutek błędów systematycznych. « powrót do artykułu
  2. Fizyk z Uniwersytetu w Genewie zaproponował rozwiązanie poważnego kryzysu, trapiącego kosmologię. Kryzysowi temu na imię stała Hubble'a. To jedna z podstawowych stałych kosmologicznych. Opisuje ona tempo rozszerzania się wszechświata. Problem w tym, że dotychczasowe obliczenia i badania dają co najmniej dwa różne, zbyt różne, wyniki. Profesor Lucas Lombriser twierdzi, że wie, skąd bierze się ta różnica. Stałą Hubbla wyznacza się za pomocą dwóch głównych metod. Pierwsza, pomiary promieniowania mikrofalowego tła, wskazuje, że wszechświat rozszerza się z prędkością 64,4 km/s/Mpc, czyli, że na każdy megaparsek (3,26 miliona lat świetlnych) tempo rozszerzania się wszechświata rośnie o 64,4 km/s. Jednak obliczenia z wykorzystaniem cefeid, zmiennych gwiazd pulsujących, dają wartość 73,4 km/s/Mpc. Różnica jest tak duża, że obliczeń tych nie da się pogodzić. W miarę upływu lat te dwie wartości były wyznaczane coraz bardziej precyzyjnie, ale różnica między nimi pozostawała. To doprowadziło do sporu naukowego. Pojawiły się głosy, że mamy do czynienia z „nową fizyką”. Lombriser wysunął jednak hipotezę, która nie wymaga odwoływania się do „nowej fizyki”. Zdaniem uczonego, należy przyjąć wszechświat nie jest homogeniczny. Oczywiście takie założenie jest prawdziwe, jednak w dość niewielkich skalach. Nie ma wątpliwości, że w galaktykach i poza nimi materia rozłożona jest inaczej. Jednak trudno wyobrazić sobie różnice w skalach tysiąckrotnie większych niż galaktyki. Jeśli znajdowalibyśmy się w gigantycznym „bąblu”, w którym gęstość materii jest znacząco mniejsza niż gęstość materii we wszechświecie, miałoby to konsekwencje dla odległości do supernowych i dla określenia stałej Hubble'a, mówi Lombriser. Naukowiec zaproponował hipotezę, że Droga Mleczna i tysiące innych galaktyk poruszają się w bąblu o średnicy 250 milionów lat świetlnych, w którym gęstość materii jest o 50% niższa niż w reszcie wszechświata. Jeśli w takim bąblu znajdują się obiekty, z galaktyk których używamy do wyznaczania stałej Hubble'a, to po przeprowadzeniu obliczeń okazuje się, że uzyskane wyniki w wysokim stopniu zgadzają się z obliczeniami, w których uwzględniane jest mikrofalowe promieniowanie tła. Prawdopodobieństwo, że istnieje tego typu fluktuacja [wspomniany bąbel – red.] wynosi między 1/20 a 1/5, co oznacza, że to nie jest tylko fantazja teoretyka. We wszechświecie istnieje wiele takich regionów jak nasz, mówi Lombriser. « powrót do artykułu
  3. Astronomowie, astrofizycy i fizycy cząstek zgromadzeni w Kavli Institute for Theoretical Physics na Uniwersytecie Kalifornijskim zastanawiają się, na ile poważne są różnice w pomiarach dotyczących stałej Hubble'a. Zagadnienie to stało się jednym z ważniejszych problemów współczesnej astrofizyki, gdyż od rozstrzygnięcia zależy nasza wiedza np. od tempie rozszerzania się wszechświata. Problem polega na tym, że wyliczenia stałej Hubble'a w oparciu o badania promieniowania wyemitowanego podczas Wielkiego Wybuchu różnią się od stałej Hubble'a uzyskiwanej na podstawie obliczeń opartych na badaniu supernowych. Innymi słowy, obliczenia oparte na najstarszych danych różnią się od tych opartych na danych nowszych. Jeśli specjaliści nie znajdą wyjaśnienia tego fenomenu może się okazać, że nie rozumiemy wielu mechanizmów działania wszechświata. W latach 20. XX wieku Edwin Hubble zauważył, że najdalsze obiekty we wszechświecie wydają się oddalać od siebie szybciej niż te bliższe. Pojawiła się więc propozycja stworzenia stałą Hubble'a opisującej tempo rozszerzania się wszechświata. Eksperymenty mające na celu określenie warto tej stałej dają jednak różne wyniki. Jedna z technik jej poszukiwania zakłada wykorzystanie mikrofalowego promieniowania tła, czyli światła powstałego wkrótce po Wielkim Wybuchu. Prowadzone na tej podstawie pomiary i obliczenia wykazały, że stała Hubble'a to 67,4 km/s/Mpc ± 0,5 km/s/Mpc. Jednak badania oparte o dane z supernowych pokazują, że stała Hubble'a to 74,0 km/s/Mpc. Obie wartości nie mogą być prawdziwe, chyba, że przyjmiemy, że coś niezwykłego stało się na początku rozszerzania się wszechświata. Niektórzy fizycy sugerują, że u zarania dziejów istniał inny rodzaj ciemnej energii powodującej rozszerzanie się wszechświata. Na razie jednak fizycy nie wszczynają alarmu i uważają, że obecne teorie dotyczące działania wszechświata są nadal ważne. « powrót do artykułu
×
×
  • Create New...