Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'komputer kwantowy' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 59 wyników

  1. NTT oraz Uniwersytet w Osace poinformowały, że przed dwoma dniami (26 maja) po raz pierwszy w historii wykorzystały kwantową teleportację do przeprowadzenia kwantowych obliczeń. Powodzenie projektu było możliwe dzięki pracom grupy naukowców z NTT, której przewodzil Yuuka Tokunaka oraz profesora Nobuyukiego Imoto z Uniwersytetu w Osace. Pokazany przez nich "kwantowy komputer" był zbudowany z "obracającej się bramki" oraz "kontrolowanej bramki NOT". Naukowcy poinformowali, że "obrotowa bramka" była łatwa do stworzenia, jednak z "kontrolowaną bramką NOT" były problemy, ponieważ jej konstrukcja wymagała interakcji pomiędzy qubitami. Udało się ją zbudować, dzięki kwantowej teleportacji, czyli zjawisku polegającym na przeniesieniu stanu kwantowego pomiędzy oddalonymi od siebie splątanymi qubitami. Naukowcy splątali ze sobą cztery fotony uzyskane za pomocą konwersji parametrycznej. Technika ta pozwala na wygenerowanie pary fotonów za pomocą pobudzenia laserem nieliniowego kryształu optycznego. Wiarygodność (czyli odsetek skutecznych prób uzyskania pożądanego obiektu) wyniosła 86%, czyli jest znacznie wyższa niż to, co udawało się dotychczas osiągnąć. Naukowcy, gdy mieli już cztery splątane fotony, przeprowadzili za ich pomocą obliczenia. Japończycy planują teraz zwiększenie liczby fotonów biorących udział w obliczeniach tak, by można było wykonywać za ich pomocą dowolne operacje matematyczne.
  2. Po raz pierwszy w historii udało się dokonać jednocześnie kwantowej teleportacji i przechować kwantowy bit w pamięci. Połączone siły naukowców z niemieckiego uniwersytetu w Heidelbergu, chińskiego Uniwersytetu Nauki i Technologii oraz Instytut Atomowego Uniwersytetów Austriackich przesłał na odległość 7 metrów qubit (kwantowy bit) i przez krótką chwilę przechowywał go w pamięci komputera. Qubity to najmniejsze jednostki informacji w kwantowych komputerach przyszłości. W przeciwieństwie do obecnych bitów, który przechowuje wartość 0 lub 1, qubit jest ich superpozycją, czyli jednocześnie przybiera wartość 0 i 1. Ponadto qubitów nie można kopiować. Możliwe jest tylko ich przeniesienie. Podczas wspomnianego eksperymentu qubit przeniesiono za pomocą teleportacji do układu pamięci, na który składały się dwa klastry wykonane z atomów rubidu. Każdy z klastrów zawiera około miliona atomów zamkniętych w magnetooptycznej pułapce. Po teleportacji można tam przechowywać i odczytywać qubit przez 8 mikrosekund (8 milionowych części sekundy), później jego stan się zmienia. Interfejs pozwalający mapować kwantowy stan fotonu na kwantowy stan materii, a następnie odczytać go bez zmiany stanu to zasadnicza część przyszłych technologii kwantowych – powiedział profesor Jian-Wei Pan, szef zespołu badawczego. Stany kwantowe przenoszone przez qubity były zakodowane w fotonach, które przekazały je rubidowym klastrom. Te reprezentowały je w postaci wspólnego spinu wszystkich elektronów w klastrze. Najpierw naukowcy splątali polaryzację fotonów ze spinem atomów rubidu. Następnie dokonali teleportacji stanu pojedynczego qubitu za pomocą pomiaru splątanego fotonu z fotonem, który miał być teleportowany. Pomiar doprowadził do splątania obu fotonów i projekcji stanu drugiego fotonu na klaster atomów rubidu. Technika ta ma jednak poważne wady. Po pierwsze prawdopodobieństwo, że dojdzie do teleportacji jest niewielkie, po drugie informacja jest przechowywana w pamięci bardzo krótko. Dlatego też sami naukowcy prowadzący eksperyment mówią, że konieczne są jeszcze znaczne usprawnienia.
  3. Biofizycy z Uniwersytetu Kalifornijskiego w Berkeley wykazali, że rośliny wykorzystują obliczenia kwantowe – wnioskowanie na podstawie gęstości prawdopodobieństwa – podczas przeprowadzania fotosyntezy. W ciągu sekundy rośliny na Ziemi absorbują około 1017 dżuli energii. Przemiana energii słonecznej w węglowodany zajmuje im bilionowe części sekundy, dzięki czemu jedynie niewielka jej część jest dla roślin stracona. Biofizyk Gregory Engel i jego zespół schłodzili bakterię Chlorobium tepidum, jeden z najstarszych na Ziemi organizmów wykorzystujących fotosyntezę, do temperatury -196 stopni Celsjusza, a następnie traktowali ją bardzo krótkimi impulsami światła laserowego. Manipulując impulsami byli w stanie prześledzić przepływ energii przez system odpowiedzialny za fotosyntezę u bakterii. Zawsze sądziliśmy, że energia przepływa dość prostą drogą. Okazało się jednak, że tam, gdzie mogła płynąć w lewo lub w prawo, nie wybierała jednego z kierunków, ale oba na raz. Przemieszczała się wieloma różnymi drogami jednocześnie – mówi Engel. Innymi słowy rośliny wykorzystują podstawy mechaniki kwantowej do przemieszczania energii pomiędzy chromoforami aż do miejsca, w którym zachodzi fotosynteza. Engel informuje, że zaobserwowano, iż przepływ energii przypominał przepływ fali. Taki sposób przemieszczania energii okazuje się najbardziej efektywnym. Badania amerykańskich uczonych przydadzą się naukowcom, którzy pracują nad sztuczną fotosyntezą. Może ona znaleźć zastosowanie np. w bateriach słonecznych przyszłości. Jednak, jak przyznaje Engel, skopiowanie wykorzystywanego przez rośliny modelu transportu energii będzie bardzo trudne. Naukowcy wciąż nie wiedzą, w jaki sposób rośliny potrafią przesyłać energię słoneczną pomiędzy chromoforami i jednocześnie nie dopuszczają do jej zamiany w energię cieplną.
  4. Do powstania pierwszego prawdziwego komputera kwantowego jeszcze długa droga, ale naukowcy czynią na niej kolejne postępy. Akademicy z uniwersytetu w Buffalo opracowali urządzenie, które potrafi schwytać elektron i wykryć jego spin. Wcześniej naukowcom z różnych ośrodków udało dokonać się podobnych rzeczy, jednak wykorzystywali do tego celu kwantowe kropki, a cała operacja odbywała się w temperaturze niższej niż 1 stopień Kelvina (poniżej -272,15 stopnia Celsjusza). Uczeni z Buffalo są natomiast w stanie manipulować spinem w temperaturze około 20 stopni Kelvina. To wciąż bardzo niska temperatura (-253,15), jednak łatwiejsza do uzyskania. Tym samym badania z Buffalo stanowią krok naprzód w kierunku powstania komputerów kwantowych. Opracowany w Buffalo system reguluje przepływ elektronów w półprzewodniku dzięki dostarczaniu napięcia elektrycznego do metalicznych bramek znajdujących się na powierzchni półprzewodnika. Gdy zwiększamy napięcie, stopniowo zamyka się szczelina w bramkach. Dzięki temu przepływa przez nią coraz mniej i mniej elektronów, aż ich ruch zostaje całkowicie zatrzymany. Kiedy szczelina jest bliska zamknięcia, możemy ‘przytrzasnąć’ w niej ostatni z elektronów i wykryć jego spin – mówi profesor Jonathan P. Bird. Niedawno teoretycznie przewidziano, że możliwe jest skonstruowanie takiego urządzenia, które złapie pojedynczy elektron i wykryje jego spin. Naukowcy z Buffalo udowodnili tę teorię.
  5. Kanadyjska firma D-Wave Systems Inc. pokazała ponoć pierwszy na świecie kwantowy komputer. Firma zaznaczyła jednak, że jej maszyna ma uzupełnić, a nie zastąpić, obecnie wykorzystywane komputery. Kwantowy komputer firmy D-Wave, który wykonuje ponoć 64 000 operacji jednocześnie, znajdzie zastosowanie przede wszystkim tam, gdzie przetwarzane są tak olbrzymie ilości danych, iż tradycyjne komputery nie są w stanie poradzić sobie z nimi w rozsądnym czasie. Chodzi tutaj o tzw. problemy NP, czyli posiadające niedeterministyczne algorytmy o złożoności wielomianowej. Rozwiązanie takich problemów jest wyjątkowo trudne dla współczesnych komputerów, gdyż każda dodatkowa zmienna oznacza, że istnieją kolejne możliwe rozwiązania tego samego problemu. Każda możliwość musi być wyliczona i porównana z innymi celem znalezienia optymalnego rozwiązania. Komputery kwantowe mają tę przewagę nad obecnie stosowanymi maszynami, że potrafią jednocześnie podać wiele wyników dla takich zadań. Kalkulacje przebiegają więc nieporównywalnie szybciej. Pierwszymi klientami kanadyjskiej firmy będą więc organizacje działające w obszarach nauk biologicznych, biometryki, logistyki, czy przedsiębiorstwa zarządzające gigantycznymi bazami danych. Prawdopodobnie, przynajmniej początkowo, czas pracy komputera będzie wynajmowany, a wymiana danych i wyników obliczeń będzie odbywała się za pomocą Internetu. Obecnie przekazano niewiele informacji ponad to, że Orion, bo tak ma nazywać się maszyna, jest pierwszym komputerem kwantowym, który opuścił laboratorium i jest gotowy do działania. Procesor Oriona korzysta z 16 qbitów, czyli bitów kwantowych. Zbudowany jest on z niobu i aluminium przy użyciu tradycyjnych technik litograficznych, a operacje wykonuje po schłodzeniu do temperatury bliskiej zera absolutnego. Dopiero wówczas qbity mogą utrzymać swój stan kwantowy w stanie nienaruszonym, co jest koniecznym warunkiem do przeprowadzenia obliczeń i odczytania wyniku. Przy takiej temperaturze z elektronów obu wspomnianych metali powstają bozony, które pełnią tu rolę kwantowych bitów. Do wyliczenia każdego z zadań Orion musi być osobno konfigurowany. Gdy jednak jest gotowy do pracy, wykonuje ją w rekordowym czasie. Zdjęcie głównego elementu komputera - procesora przymocowanego do zestawu chłodzącego - pojawiło się w serwisie Flickr. Aktualizacja: Firma D-Wave zapowiedziała, że w 2008 rozpocznie sprzedaż kwantowych procesorów. Tymczasem pojawiły się pierwsze komentarze ekspertów. Część z nich wątpi, czy zaprezentowana maszyna jest na obecnym etapie zdolna do wykonania tak skomplikowanych obliczeń, jak współczesne komputery. Podejrzewają, że może ona przeprowadzać bardzo proste obliczenia. Seth Lloyd, specjalista od komputerów kwantowych z MIT, stwierdził: "Pozostało jeszcze wiele pytań i domysłów". Dodał przy tym, że "z naukowego punktu widzenia ich osiągnięcie jest bardzo interesujące". Kwantowy komputer D-Wave nie będzie w stanie łamać szyfrów. A m.in. kryptografia ma być ważnym polem działalności kwantowych komputerów. Kanadyjska firma wykorzystała bowiem łatwiejsze w implementacji tzw. adiabatyczne obliczenia kwantowe. Technika ta polega na schłodzeniu metalu do takich temperatur, by jego elektrony stały się qbitami. Następnie, za pomocą pola magnetycznego, łączy się qubity ze sobą. Podczas pokazu komputer D-Wave kontrolowany był zdalnie za pomocą laptopa. Maszyna miała rozwiązać trzy zadania: wyszukać strukturę molekularną, pasującą do zadanej molekuły, porozsadzać gości według bardzo skomplikowanego wzoru i ułożyć Sudoku (rodzaj puzzli). Czytaj również: Kwantowy falstart? Zasada działania komputerów kwantowych
  6. Dokonano kolejnego przełomu na drodze do stworzenia urządzeń elektronicznych przyszłości. Tym razem postęp dotyczy spintroniki. Ian Appelbaum i Biqin Huang z University of Delaware oraz Douwe Monsma z Cambridge NanoTech stworzyli działające urządzenie, które korzysta z krzemu i osiągnięć spintroniki. Dotychczas tych dwóch rzeczy nie udawało się skutecznie połączyć. We współczesnej elektronice informacje przechowywane i przesyłane są za pomocą ładunku elektrycznego elektronów. Spintronika chce je przechowywać korzystając ze spinu elektronów. Spin to własny moment pędu cząsteczki. Jest on wielkością kwantową, niezmienną. Upraszczając jest to ruch obrotowy elektronu wokół własnej osi. Taki wirujący elektron wytwarza własne pole magnetyczne. W materiałach ferromagnetycznych elektrony o takim samym spinie grupują się i tworzą uporządkowane magnetyczne obszary zwane domenami. Te domeny można wykorzystać do przetwarzania i przechowywania informacji. To właśnie jest dziedziną spintroniki. Dotychczas główną przeszkodą na drodze do rozwoju tej technologii był fakt, że działała ona tylko w ferromagnetykach. Użycie taniego i dobrze znanego krzemu było niemożliwe. Próbowano łączyć materiały ferromagnetyczne z krzemem, ale powodowało to poważne problemy z kontrolowaniem elektronów. Amerykańscy uczeni znaleźli rozwiązanie. Umieścili na krzemie wyjątkowo cienką warstwę materiału ferromagnetycznego. Jej grubość wynosi zaledwie 5 nanometrów. Użyli ponadto elektronów o wysokiej energii. Dzięki temu udało im się kontrolować elektrony i przełączać ich spin za pomocą pola magnetycznego. Rozwój spintroniki pozwoli na zbudowanie m.in. komputerów kwantowych.
  7. NEC, Japońska Agencja Nauki i Technologii (JST) oraz Instytut Badań Fizycznych i Chemicznych (RIKEN) po raz pierwszy w historii zademonstrowały układ, który jest w stanie kontrolować splątanie pomiędzy kubitami, czyli kwantowymi bitami. Powstała więc technologia, która umożliwi stworzenie działających w praktyce komputerów kwantowych. Środowisko naukowe od dawna czekało na takie odkrycie. Do zbudowania kwantowego komputera nieodzowne jest bowiem: kontrolowanie stanu pojedynczego kubitu, kontrolowanie stanu dwóch splątanych kubitów, możliwość splątania i "rozplątania” kubitów. NEC, JST i RIKEN już wcześniej uzyskały nie tylko stabilny kubit, ale również pierwszą bramkę logiczną składającą się z dwóch kubitów. Logicznym następstwem ich prac było więc ostatnie osiągnięcie – kontrolowane splątanie kubitów. Aby to osiągnąć, wykorzystano trzeci kubit, który działa jak nieliniowy transformator, zdolny do włączania i wyłączania oddziaływania magnetycznego pomiędzy dwoma kubitami. Kontrolę włączania i wyłączania można sprawować za pomocą mikrofal. Co ważne, operacje splątywania udało się przeprowadzić tak, że czas życia kubitu nie został skrócony. Działanie komputera kwantowego: Najmniejszą cząstką informacji wykorzystywaną w komputerach jest bit. Jest on reprezentowany przez 0 lub 1. We współczesnych maszynach informacja, czyli ciąg bitów, przekazywana jest dzięki przepływowi elektronów. Tranzystory w procesorach posiadają przełączniki, które mogą zostać ustawione w pozycji „0” (niższe napięcie) lub „1” (wyższe napięcie). Tak więc za pomocą na przykład trzech bitów możemy stworzyć 8 różnych kombinacji: 1-1-1, 0-1-1, 1-0-1, 1-1-0, 0-0-0, 1-0-0, 0-1-0 oraz 0-0-1. Jednak w danej chwili w tych trzech bitach można zapisać tylko jedną z ośmiu kombinacji. Komputery kwantowe mają bazować na zjawisku z mechaniki kwantowej, która przewiduje, że ta sama cząsteczka może jednocześnie znajdować się w różnych miejscach, czyli jednocześnie przyjmować obie pozycje 0 i 1. Tak więc trzy kwantowe bity, zwany qbitami, mogą jednocześnie przechowywać wszystkie osiem kombinacji i wykonać na nich operacje. Z tego wynika, że trzybitowy komputer kwantowy będzie ośmiokrotnie bardziej wydajny, niż obecnie stosowane komputery. Obecnie coraz bardziej powszechnie stosowane są komputery 64-bitowe. A kwantowy komputer operujący jednocześnie na 64 bitach byłby nawet około 18 000 000 000 000 000 000 razy szybszy od współcześnie wykorzystywanej maszyny.
  8. Obliczenia kwantowe są czymś tak ulotnym, że nawet firma D-Wave, która zaprezentowała właśnie, jak stwierdziła, "pierwszy komercyjnie dostępny kwantowy komputer” przyznała, że nie jest do końca pewna, czy maszyna rzeczywiście wykonuje kwantowe obliczenia. Pierwsze wątpliwości napłynęły ze strony środowiska akademickiego. Inni specjaliści pracujący nad kwantowymi maszynami zauważyli, że Kanadyjczycy nie udostępnili szczegółowych danych na temat Oriona, ani nie przedstawili zasady jego działania. Dopóki nie zobaczymy konkretnych dowodów trudno będzie stwierdzić, czy oni [D-Wave – red.] odnieśli sukces, czy też nie – powiedział Phil Kuekes, pracownik Quantum Science Research Group w HP Labs. Firma D-Wave, która pokazała pierwszy kwantowy komputer, nie pozwoliła go obejrzeć na żywo. Pracę maszyny obecni mogli oglądać dzięki przekazowi wideo. Kanadyjczycy tłumaczyli, że Orion jest zbyt delikatny, by go przenosić. Szef firmy, Herb Martin, przyznał też, że ich maszyna nie jest prawdziwym kwantowym komputerem, a rodzajem maszyny, która do rozwiązywania części problemów wykorzystuje zasady mechaniki kwantowej. Użytkowników nie obchodzą kwantowe obliczenia – użytkownikom zależy na przyspieszeniu pracy – stwierdził. Prace nad komputerem kwantowym ogólnego przeznaczenia, to strata czasu. Można wydać na to setki miliardów dolarów i nie stworzyć takiej maszyny – dodał. Powiedział również, że wszystko wskazuje na to, iż Orion dokonuje operacji logicznych na qbitach, ale przyznał, że istnieją jednak pewne wątpliwości. Przypuszcza również, że przy próbach zwiększenia mocy komputera mogą pojawić się problemy z utrzymaniem stanów kwantowych. Obecnie Orion korzysta z 16 qbitów, a firma uznaje go za prototyp. Martin stwierdził jednak, że zanim komputer trafi w przyszłym roku do sprzedaży, jego moc zostanie zwiększona do 1000 qbitów. Zobacz również: Pokazano pierwszy kwantowy komputer Zasada działania komputerów kwantowych
  9. Specjaliści na całym świecie oceniają, że komputery kwantowe powstaną za około 20 lat. Tymczasem firma D-Wave z Kanady oświadczyła, że w przyszłym tygodniu zaprezentuje pierwszy działający komputer kwantowy. Maszyna ma wykonywać jednocześnie 64 000 operacji. Jest to ponoć możliwe, dzięki specjalnym technikom opracowanym przez D-Wave. Do zapowiedzi takich należy podchodzić z dużą dozą sceptycyzmu. Każdy, kto słyszał o postępie prac nad kwantowym komputerem musi wątpić w rewelacje ogłaszane przez firmę z Kolumbii Brytyjskiej. D-Wave to jedyna na świecie firma, która skupia się tylko i wyłącznie na pracach nad kwantowym komputerem. Jej kapitał wynosi ponad 20 milionów dolarów. Jej celem jest opracowanie kwantowej maszyny z której możnaby korzystać za pomocą Internetu, wynajmując ją na dany okres czasu tak, jak ma to miejsce w przypadku współczesnych superkomputerów. Naukowcy wątpią jednak, czy D-Wave rzeczywiście będzie w stanie pokazać kwantowy komputer. Podobnie było z zimną fuzją jądrową – mówi profesor Andrew Steane z Centrum Komputerów Kwantowych Uniwersytetu w Oxfordzie. Nieco większym optymistą jest profesor Seth Lloyd z MIT-u: Nie uwierzę, dopóki nie zobaczę. Ale jestem szczęśliwy, że oni nad tym pracują. Powszechnie uważa się, że powstanie kwantowego komputera będzie oznaczało, że współcześnie wykorzystywane szyfry staną się bezużyteczne. Maszyna kwantowa złamie je błyskawicznie. Dlaczego tak się stanie oraz o zasadach działania komputerów kwantowych można przeczytać w notce pt. "Bliżej kwantowego komputera".
×
×
  • Dodaj nową pozycję...