Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' Muon g-2' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 1 wynik

  1. Nadeszły długo oczekiwane pierwsze wyniki badań w eksperymencie Muon g-2 prowadzonym przez Fermi National Accelerator Laboratory (Fermilab). Pokazują one, że miony zachowują się w sposób, który nie został przewidziany w Modelu Standardowym. Badania, przeprowadzone z bezprecedensową precyzją, potwierdzają sygnały, jakie inni naukowcy zauważali od dekad. Jeśli się potwierdzą, będzie to wyraźnym dowodem, iż miony wykraczają poza Model Standardowy i mogą wchodzić w interakcje z nieznaną cząstką. To wyjątkowy dzień, długo oczekiwany nie tylko przez nas, ale przez całą społeczność fizyków, mówi Graziano Venanzoni, fizyk z Włoskiego Narodowego Instytutu Fizyki Jądrowej, rzecznik eksperymentu Muon g-2. Miony są około 200 razy bardziej masywne niż ich kuzyni, elektrony. Występują w promieniowaniu kosmicznym docierającym do Ziemi, a w akceleratorach cząstek potrafimy uzyskiwać je w dużych ilościach. Podobnie jak elektrony, miony zachowują się tak, jakby zawierały magnes. Jak wiemy ze wzoru wprowadzonego przez Paula Diraca, twórcę teorii kwarków, moment magnetyczny samotnego mionu – współczynnik g – ma wartość 2. Stąd zresztą nazwa eksperymentu Muon g-2. Z czasem do wyliczeń tych wprowadzono niewielkie poprawki, określając dokładną wartość współczynnika. Jednak na mion, podobnie zresztą jak na elektron, wpływa jego otoczenie. Gdy miony krążą w eksperymencie Muon g-2 stykają się z kwantową pianką tworzoną przez pojawiające się i znikające subatomowe cząstki. Interakcja z nimi wpływa na wartość współczynnika g. Model Standardowy pozwala z wielką precyzją wyliczyć tę wartość. Oczywiście uwzględniając przy tym znane nam cząstki. Jeśli więc pojawi się cząstka lub siła nieznana w Modelu Standardowym, współczynnik g przyjmie wartość, która nie jest przezeń przewidziana. To, co mierzymy, odzwierciedla wszystkie interakcje, z jakimi mion miał do czynienia. Jednak gdy teoretycy przeprowadzają swoje obliczenia, biorąc pod uwagę wszystkie znane siły i cząstki Modelu Standardowego, okazuje się, że wynik ich obliczeń jest różny od wyniku naszego eksperymentu. To silna wskazówka, że na mion działa coś, czego nie przewiduje Model, mówi Renee Fatemi, fizyk z University of Kentucky, która jest odpowiedzialna za symulacje w eksperymencie Muon g-2. Zgodnie z akceptowanymi obecnie wyliczeniami teoretyków współczynnik g dla mionu wynosi 2,00233183620(86), a wartość poprawki momentu magnetycznego to 0,00116591810(43). W nawiasach zawarto niepewność wyliczeń. Tymczasem uśrednione wartości, jakie uzyskano podczas najnowszych eksperymentów w Fermilab to 2,00233184122(82) oraz 0,00116592061(41). Istotność statystyczna tej różnicy – czyli w tym przypadku niezgodność obliczeń teoretycznych obliczeń z pomiarami – wynosi aż 4,2 sigma. Przypomnijmy tutaj, że od 5 sigma mówimy w fizyce o odkryciu. Prawdopodobieństwo, że uzyskane wyniki są fałszywe wynosi 1:40 000. Jak zatem widać, fizycy o odkryciu jeszcze nie mówią, ale mają bardzo silne przesłanki, by wierzyć w wyniki eksperymentu. Eksperyment Moun g-2 zaczął w Fermilab pracę w 2018 roku. Korzysta on z nadprzewodzącego magnetycznego pierścienia akumulacyjnego o średnicy ponad 15 metrów. W 2013 roku pierścień ten został przewieziony z Brookhaven National Laboratory, gdzie nie był już potrzebny. To niezwykłe wydarzenie opisywaliśmy przed 8 laty. Przez kolejne 4 lata specjaliści składali, kalibrowali i testowali nowe urządzenie, wyposażając Moun g-2 w najnowsze osiągnięcia techniki i tworząc na jego potrzebny nowe metody badawcze. W eksperymencie tym strumień mionów tysiące razy krąży w pierścieniu z prędkością bliską prędkości światła. Tylko w pierwszym roku działania Muong g-2 z Fermilab zebrał więcej danych niż wszystkie wcześniejsze eksperymenty razem wzięte. Dzięki współpracy ponad 200 naukowców z 35 instytucji naukowych z 7 krajów udało się obecnie dostarczyć szczegółowe dane dotyczące pomiarów ruchu ponad 8 miliardów mionów wykorzystywanych podczas pierwszego sezonu badawczego (rok 2018). Obecnie prowadzone są analizy danych z dwóch kolejnych sezonów (lata 2019–2020). Jednocześnie trwa czwarty sezon, a piąty jest planowany. Połączenie danych ze wszystkich wspomnianych sezonów pozwoli na określenie współczynnika g z jeszcze większą precyzją. Dotychczas przeanalizowaliśmy mniej niż 6% danych, jakie dostarczy nam Muon g-2. Już pierwsze wyniki pokazują, że istnieje interesująca rozbieżność pomiędzy eksperymentem a Modelem Standardowym. W ciągu najbliższych kilku lat dowiemy się znacznie więcej, mówi Chris Polly z Fermilab, który jako student brał udział w badaniach w Brookhaven. « powrót do artykułu
×
×
  • Dodaj nową pozycję...