Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'zabieg nieinwazyjny' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 2 wyniki

  1. Podczas International Solid-State Circuits Conference uczeni z Uniwersytetu Stanforda zaprezentowali niewielki implant, zdolny do kontrolowania swej trasy w układzie krwionośnym człowieka. Ada Poon i jej koledzy stworzyli urządzenie zasilane za pomocą fal radiowych. Implant można więc wprowadzić do organizmu człowieka, kontrolować jego trasę i nie obawiać się, że np. wyczerpią się baterie. Takie urządzenia mogą zrewolucjonizować technologię medyczną. Ich zastosowanie będzie bardzo szerokie - od diagnostyki do minimalnie inwazyjnej chirurgii - mówi Poon. Jej implant będzie mógł wędrować przez układ krwionośny, dostarczać leki do wyznaczonych miejsc, przeprowadzać analizy, a być może nawet rozbijać zakrzepy czy usuwać płytki miażdżycowe. Naukowcy od kilkudziesięciu lat starają się skonstruować podobne urządzenie. Wraz z postępem technologicznym coraz większym problemem było zasilanie takich urządzeń. Sam implant można było zmniejszać, jednak zasilające go baterie pozostawały dość duże - stanowiąc często połowę implantu - i nie pozwalały mu na zbyt długą pracę. Potrafiliśmy znacząco zminiaturyzować części elektroniczne i mechaniczne, jednak miniaturyzacja źródła energii za tym nie nadążała. To z kolei ograniczało zastosowanie implantów i narażało chorego na ryzyko korozji baterii, ich awarii, nie mówiąc już o ryzyku związanym z ich wymianą - mówi profesor Teresa Meng, która również brała udział w tworzeniu implantu. Urządzenie Poon wykorzystuje zewnętrzny nadajnik oraz odbiornik znajdujący się w implancie. Wysyłane przez nadajnik fale radiowe indukują w cewce odbiornika prąd. W ten sposób urządzenie jest bezprzewodowo zasilane. Opis brzmi bardzo prosto, jednak naukowcy musieli pokonać poważne przeszkody. Uczeni od 50 lat myśleli o zasilaniu w ten sposób implantów, jednak przegrywali z... matematyką. Wszelkie wyliczenia pokazywały, że fale radiowe o wysokiej częstotliwości natychmiast rozpraszają się w tkankach, zanikając wykładniczo w miarę wnikania do organizmu. Fale o niskiej częstotliwości dobrze przenikają do tkanek, jednak wymagałyby zastosowania anteny o średnicy kilku centymetrów, a tak dużego urządzenia nie można by wprowadzić do układu krwionośnego. Skoro matematyka stwierdzała, że jest to niemożliwe, nikt nie próbował sprzeciwić się jej regułom. Poon postanowiła jednak przyjrzeć się wykorzystywanym modelom matematycznym i odkryła, że większość uczonych podchodziła do problemu niewłaściwie. Zakładali bowiem, że ludzkie mięśnie, tłuszcz i kości są dobrymi przewodnikami, a zatem należy w modelach wykorzystać równania Maxwella. Uczona ze Stanforda inaczej potraktowała ludzką tkankę. Uznała ją za dielektryk, czyli niejako rodzaj izolatora. To oznacza, że nasze ciała słabo przewodzą prąd. Jednak nie przeszkadza to zbytnio falom radiowym. Poon odkryła też, że tkanka jest dielektrykiem, który charakteryzują niewielkie straty, co oznacza, że dochodzi do małych strat sygnału w miarę zagłębiania się w tkankę. Uczona wykorzystała różne modele matematyczne do zweryfikowania swoich spostrzeżeń i odkryła, że fale radiowe wnikają w organizm znacznie głębiej niż sądzono. Gdy użyliśmy prostego modelu tkanki do przeliczenia tych wartości dla wysokich częstotliwości odkryliśmy, że optymalna częstotliwość potrzebna do bezprzewodowego zasilania wynosi około 1 GHz. Jest więc około 100-krotnie wyższa niż wcześniej sądzono - mówi Poon. To oznacza też, że antena odbiorcza w implancie może być 100-krotnie mniejsza. Okazało się, że jej powierzchnia może wynosić zaledwie 2 milimetry kwadratowe. Uczona stworzyła implanty o dwóch różnych rodzajach napędu. Jeden przepuszcza prąd elektryczny przez płyn, w którym implant się porusza, tworząc siły popychające implant naprzód. Ten typ implantu może przemieszczać się z prędkością ponad pół centymetra na sekundę. Drugi typ napędu polega na ciągłym przełączaniu kierunku ruchu prądu, przez co implant przesuwa się podobnie do napędzanej wiosłami łódki. Jest jeszcze sporo do udoskonalenia i czeka nas wiele pracy zanim takie urządzenia będzie można stosować w medycynie - mówi Poon.
  2. Podczas International Solid-State Circuits Conference uczeni z Uniwersytetu Stanforda zaprezentowali niewielki implant, zdolny do kontrolowania swej trasy w układzie krwionośnym człowieka. Ada Poon i jej koledzy stworzyli urządzenie zasilane za pomocą fal radiowych. Implant można więc wprowadzić do organizmu człowieka, kontrolować jego trasę i nie obawiać się, że np. wyczerpią się baterie. Takie urządzenia mogą zrewolucjonizować technologię medyczną. Ich zastosowanie będzie bardzo szerokie - od diagnostyki do minimalnie inwazyjnej chirurgii - mówi Poon. Jej implant będzie mógł wędrować przez układ krwionośny, dostarczać leki do wyznaczonych miejsc, przeprowadzać analizy, a być może nawet rozbijać zakrzepy czy usuwać płytki miażdżycowe. Naukowcy od kilkudziesięciu lat starają się skonstruować podobne urządzenie. Wraz z postępem technologicznym coraz większym problemem było zasilanie takich urządzeń. Sam implant można było zmniejszać, jednak zasilające go baterie pozostawały dość duże - stanowiąc często połowę implantu - i nie pozwalały mu na zbyt długą pracę. Potrafiliśmy znacząco zminiaturyzować części elektroniczne i mechaniczne, jednak miniaturyzacja źródła energii za tym nie nadążała. To z kolei ograniczało zastosowanie implantów i narażało chorego na ryzyko korozji baterii, ich awarii, nie mówiąc już o ryzyku związanym z ich wymianą - mówi profesor Teresa Meng, która również brała udział w tworzeniu implantu. Urządzenie Poon wykorzystuje zewnętrzny nadajnik oraz odbiornik znajdujący się w implancie. Wysyłane przez nadajnik fale radiowe indukują w cewce odbiornika prąd. W ten sposób urządzenie jest bezprzewodowo zasilane. Opis brzmi bardzo prosto, jednak naukowcy musieli pokonać poważne przeszkody. Uczeni od 50 lat myśleli o zasilaniu w ten sposób implantów, jednak przegrywali z... matematyką. Wszelkie wyliczenia pokazywały, że fale radiowe o wysokiej częstotliwości natychmiast rozpraszają się w tkankach, zanikając wykładniczo w miarę wnikania do organizmu. Fale o niskiej częstotliwości dobrze przenikają do tkanek, jednak wymagałyby zastosowania anteny o średnicy kilku centymetrów, a tak dużego urządzenia nie można by wprowadzić do układu krwionośnego. Skoro matematyka stwierdzała, że jest to niemożliwe, nikt nie próbował sprzeciwić się jej regułom. !RCOL Poon postanowiła jednak przyjrzeć się wykorzystywanym modelom matematycznym i odkryła, że większość uczonych podchodziła do problemu niewłaściwie. Zakładali bowiem, że ludzkie mięśnie, tłuszcz i kości są dobrymi przewodnikami, a zatem należy w modelach wykorzystać równania Maxwella. Uczona ze Stanforda inaczej potraktowała ludzką tkankę. Uznała ją za dielektryk, czyli niejako rodzaj izolatora. To oznacza, że nasze ciała słabo przewodzą prąd. Jednak nie przeszkadza to zbytnio falom radiowym. Poon odkryła też, że tkanka jest dielektrykiem, który charakteryzują niewielkie straty, co oznacza, że dochodzi do małych strat sygnału w miarę zagłębiania się w tkankę. Uczona wykorzystała różne modele matematyczne do zweryfikowania swoich spostrzeżeń i odkryła, że fale radiowe wnikają w organizm znacznie głębiej niż sądzono. Gdy użyliśmy prostego modelu tkanki do przeliczenia tych wartości dla wysokich częstotliwości odkryliśmy, że optymalna częstotliwość potrzebna do bezprzewodowego zasilania wynosi około 1 GHz. Jest więc około 100-krotnie wyższa niż wcześniej sądzono - mówi Poon. To oznacza też, że antena odbiorcza w implancie może być 100-krotnie mniejsza. Okazało się, że jej powierzchnia może wynosić zaledwie 2 milimetry kwadratowe. Uczona stworzyła implanty o dwóch różnych rodzajach napędu. Jeden przepuszcza prąd elektryczny przez płyn, w którym implant się porusza, tworząc siły popychające implant naprzód. Ten typ implantu może przemieszczać się z prędkością ponad pół centymetra na sekundę. Drugi typ napędu polega na ciągłym przełączaniu kierunku ruchu prądu, przez co implant przesuwa się podobnie do napędzanej wiosłami łódki. Jest jeszcze sporo do udoskonalenia i czeka nas wiele pracy zanim takie urządzenia będzie można stosować w medycynie - mówi Poon.
×
×
  • Dodaj nową pozycję...