Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'uczyć się' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 5 wyników

  1. Wbrew powtarzanemu od dawna twierdzeniu, że człowiek ma wrodzony lęk przed wężami i/lub pająkami, psycholodzy udowadniają, że strachu przed tymi zwierzętami uczymy się w rzeczywistości w niemowlęctwie. Vanessa LoBue z Rutgers University i David H. Rakison z Carnegie Mellon University oraz Judy S. DeLoache z University of Virginia przeanalizowali badania na ten temat. W swoim artykule naukowcy przypomnieli, że jedna z teorii wyjaśniająca, czemu boimy się pająków i węży, utrzymuje, że dzieje się tak, gdyż wiele z nich jest jadowitych. Z tego powodu dobór naturalny miał faworyzować ludzi, którzy trzymali się od tych zwierząt z daleka. W przeszłości Arne Öhman z Karolinska Institutet wykazał np., że można nauczyć ludzi kojarzenia z porażeniem prądem albo zdjęć węży i pająków, albo kwiatów i grzybów, ale efekt będzie się utrzymywać dłużej dla zestawu pajęczo-wężowego, czyli czegoś istotnego z ewolucyjnego punktu widzenia. Susan Mineka z Northwestern University zademonstrowała zaś, że co prawda małpy wychowane w laboratorium nie bały się węży, ale uczyły się go dużo szybciej niż lęku przed kwiatami czy królikami. Trio psychologów postanowiło sprawdzić, jak reagują na przerażające obiekty niemowlęta i nieco starsze dzieci. W jednej serii eksperymentów 7-miesięcznym niemowlętom tuż obok siebie wyświetlano dwa nagrania wideo: jedno węża, a drugie czegoś bezpiecznego, np. słonia. W tym samym czasie badacze odtwarzali albo przerażony, albo zadowolony głos. Okazało się, że maluchy spędzały więcej czasu, spoglądając na węża, kiedy słyszały przestraszony głos, ale same z siebie nie wykazywały oznak lęku. W ramach kolejnego studium 3-latkom wyświetlano na ekranie dziewięć fotografii i proszono o wybranie pewnego docelowego obiektu. Dzieci identyfikowały węże szybciej niż kwiaty i prędzej od innych zwierząt przypominających węże, np. żab i gąsienic. Dzieci, które bały się węży, wskazywały je tak samo szybko jak maluchy, u których nie rozwinął się taki lęk. Wszystko sugeruje więc, że tak jak demonstrowali Öhman i Mineka w badaniach na małpach i dorosłych, rzeczywiście szybko wykrywamy węże i pająki oraz kojarzymy je z dźwiękami wskazującymi na obrzydzenie czy przestrach, ale arachno- i ofidiofobii się uczymy, a nie rodzimy się z nimi, bo niektóre dzieci reagują co prawda błyskawicznie, lecz wcale nie wykazują lęku.
  2. Gdy uczymy się nowych rzeczowników, uaktywniają się inne części mózgu niż podczas opanowywania czasowników. Hiszpańscy psycholodzy - Antoni Rodríguez-Fornells z Uniwersytetu Barcelońskiego i Anna Mestres-Missé, która obecnie pracuje w Instytucie Ludzkiego Poznania i Nauk o Mózgu Maxa Placka – oraz niemiecki neurolog Thomas F. Münte z Uniwersytetu Otto-von-Guericke'a w Magdeburgu posłużyli się funkcjonalnym rezonansem magnetycznym. Zespół wiedział, że pacjenci z uszkodzeniami mózgu wykazują pewnego rodzaju dysocjację, przetwarzając rzeczowniki i czasowniki oraz że dzieci uczą się rzeczowników przed czasownikami. Wykazano też, że podczas testów funkcjonowania poznawczego dorośli lepiej sobie radzą i szybciej reagują na rzeczowniki. Mając to na uwadze, hiszpańsko-niemiecki zespół postanowił sprawdzić, czy różnice te można zobaczyć także w mózgu. Badacze zebrali więc grupę 21 ochotników, których zadanie polegało na wyuczeniu się nowych rzeczowników i czasowników. W ramach testu trzeba było wydedukować znaczenie słowa z kontekstu. W tym celu układano z nim 2 zdania, np. "Dziewczyna dostała na Gwiazdkę jat" oraz "Drużba był tak zdenerwowany, że zapomniał jatu" (rzeczownik "jat" oznaczał pierścionek/obrączkę) lub "Student nisował na śniadanie makaron" i "Mężczyzna nisował dla niej przepyszne mięso" (w tym przypadku chodziło, oczywiście, o czasownik "gotować"). To zadanie symuluje na poziomie eksperymentalnym, w jaki sposób w ciągu życia rozszerzamy swoje słownictwo, odszyfrowując znaczenie nowych wyrazów z kontekstu – zaznacza Rodríguez-Fornells. Uczestnicy studium musieli w ten sposób opanować po 80 nieznanych rzeczowników i czasowników. Okazało się, że rzeczowniki aktywowały głównie lewy zakręt wrzecionowaty (część płata skroniowego, która bierze udział w przetwarzaniu wzrokowym i obiektów), a czasowniki przede wszystkim lewy zakręt skroniowy środkowy (jego tylną część) i lewy dolny zakręt czołowy (odpowiadający za gramatykę). Hiszpanie i Niemiec zauważyli też dodatnią korelację między dwustronną aktywacją hipokampów i skorup a łatwością uczenia się rzeczowników, ale już nie czasowników. Rezultaty sugerują, że regiony pierwotnie skojarzone z reprezentacją znaczenia rzeczowników i czasowników są również związane z ustanawianiem zgodności/relacji między tymi znaczeniami a nowymi słowami. To proces niezwykle ważny dla nauki drugiego języka – przekonuje Rodríguez-Fornells.
  3. Badacze z MIT-u obserwowali starsze dzieci i dorosłych, którym udało się przywrócić wzrok. Dzięki temu stwierdzili, w jaki sposób mózg uczy się widzieć. Okazuje się, że kluczem do rozwiązania zagadki jest dynamiczna informacja, czyli obserwowanie poruszających się obiektów. Przypadki, gdy ktoś zaczyna widzieć, choć wcześniej przez całe życie był niewidomy, są naprawdę rzadkie. Mózg musi się nauczyć robić użytek z napływających danych wzrokowych, których przez całe lata był pozbawiony. W krajach zachodnich operuje się niewidome dzieci, ale w krajach rozwijających się, np. w Indiach, niekoniecznie. Los takich osób jest nie do pozazdroszczenia. Często borykają się one bezrobociem, są niewykształcone i wcześnie umierają. Lekarze nie chcieli dotąd operować pacjentów powyżej 5.-6. roku życia, ponieważ uważało się, że właśnie do tego wieku mózg uczy się widzieć i jakiekolwiek późniejsze zmiany są zwyczajnie pozbawione sensu. Profesor Pawan Sinha z MIT-u zajął się za pośrednictwem swojej organizacji charytatywnej Project Prakash kilkoma takimi osobami. Po paru latach prac okazało się, że operowanie po 6. roku życia ma jednak sens, a dzięki takim odkryciom można m.in. stworzyć widzące komputery, lepsze procedury rehabilitacyjne czy bardziej adekwatne modele ludzkiego systemu wzrokowego. W 2007 roku Sinha i Yuri Ostrovsky spotkali się z kobietą, która zaczęła widzieć w wieku 12 lat, co więcej - jej możliwości wzrokowe były niemal całkowicie normalne. Jak łatwo się domyślić, jej przypadek zadawał kłam teorii wieku krytycznego. Naukowcy nie byli jednak w stanie stwierdzić, jak jej mózgowi się to udało, ponieważ spotkali ją po 20 latach od momentu odtworzenia wzroku. Najnowsze studium Amerykanów objęło 3 nastolatków i młodych dorosłych z Indii. Ich losy i umiejętności śledzono przez 18 miesięcy od operacji. Zespół Sinhy stwierdził, że na początku badani mieli duży problem z odróżnieniem figur od tła, oddzieleniem od siebie nakładających się przedmiotów czy złożeniem w całość poszczególnych elementów różnych obiektów. Później zaczęli sobie jednak coraz lepiej radzić z takimi zadaniami. Jeden z badanych pacjentów (S.K.) urodził się z afakią - bez soczewek oczu. Zoperowano go w 2004 roku w wieku 29 lat. Po zabiegu wziął udział w serii testów, podczas których miał identyfikować proste kształty i obiekty. Potrafił rozpoznać niektóre kształty – trójkąty, kwadraty – kiedy były ustawione obok siebie, ale nie wtedy, gdy się nakładały. Jego mózg nie umiał rozróżnić obrysu całej figury, zamiast tego uznawał, że każdy fragment kształtu jest oddzielną całością. Jego świat był rozbity na wiele drobnych kawałków. Co ciekawe, jeśli kwadrat bądź trójkąt wprawiano w ruch, zarówno S.K., jak i pozostałe dwie uwzględnione w studium osoby o wiele lepiej radziły sobie z rozpoznaniem obiektu. Liczba przypadków pomyślnej identyfikacji kształtu rosła od blisko 0% do ok. 75%. Później te same figury łatwiej im było rozpoznać na zdjęciach. Ostatecznie pacjenci radzili sobie z nieruchomymi obiektami niemal normalnie. Mózg jest tak zaprogramowany, by wykorzystywać podobieństwa ruchu do wnioskowania, które regiony pola widzenia tworzą obiekty postrzeganego świata. Ruch może stanowić odpowiednik płyty instalacyjnej, wgrywając zasady "rozbierania" na części pierwsze obrazów statycznych.
  4. Implanty neuronalne mają pomóc osobom sparaliżowanym i posługującym się protezami kończyn w sprawowaniu nad nimi kontroli za pomocą myśli. Do tej pory interfejsy człowiek-maszyna były bardzo toporne i nieelastyczne. Reagowały np. tylko na określony typ sygnału neuronalnego, w dodatku reakcja ta była niezmienna (bazowała na zadanych algorytmach). Naukowcy z Uniwersytetu Florydzkiego ulepszyli tego typu urządzenia, dzięki czemu mogą się one uczyć wraz z mózgiem. Amerykanie wyjaśniają, że wcześniej komunikacja między komputerem a mózgiem przebiegała jednokierunkowo. Mózg wydawał polecenia, a implant je realizował, czyli przekazywał sygnał elektryczny do protezy. Teraz nowy system może wtrącić swoje trzy grosze. Pozwala to urządzeniu na nawiązanie czegoś w rodzaju dialogu i na dostosowanie do zmieniającego się zachowania człowieka na bieżąco. Dzięki temu zadania są wykonywane efektywniej, a sam interfejs działa na zasadzie asystenta. Przetestowano go już na szczurach (IEEE Transactions on Biomedical Engineering). W ogólnym schemacie interfejsów mózg-maszyna oznacza to kompletną zmianę paradygmatu – cieszy się Justin C. Sanchez, jeden z współautorów studium, a zarazem profesor nadzwyczajny neurologii pediatrycznej na tutejszym uniwersytecie. Wg niego, oznacza to znaczne rozszerzenie możliwości interakcji z implantem. Podczas wykonywania jakiejś czynności nie wydajemy mu rozkazów, interfejs zaczyna nam przy niej towarzyszyć. My znamy cel, komputer zna go również i pracujemy razem nad rozwiązaniem zadania. Nad implantami wielkości chipa naukowcy głowią się już od wielu lat. Do tej pory maszyna była jednak zaprogramowana w taki sposób, jakby człowiek w ogóle się nie zmieniał. Tymczasem uczymy się przez całe życie, zmieniają się też pisane przez nie scenariusze, musieliśmy więc stworzyć paradygmat, który zezwala na interakcję i rozwój. Sanchez i jego współpracownicy opracowali zatem system, który bazuje na ustalaniu celów i nagradzaniu. Trzem szczurom wszczepiono do mózgu wyłapujące sygnały niewielkie elektrody. Zwierzęta myślały o poruszeniu protezą w kierunku określonego celu. Za każdym razem, gdy im się to udało, dostawały w nagrodę kroplę wody. Dodatkowo komputer miał zdobyć tak dużo punktów, jak tylko się dało. Im bliżej szczur zbliżył ramię do celu, tym więcej mu ich przyznawano. W ten sposób interfejs mógł się zorientować, które sygnały z mózgu prowadzą do większej nagrody. Mimo że wzrastała trudność czynności, z czasem były one wykonywane dokładniej. Działo się tak dużo częściej, niż gdyby udawało się to przypadkowo.
  5. Naukowcy w Chinach i Wielkiej Brytanii testują oprogramowanie edukacyjne, które jest w stanie rozpoznać, kiedy uczący się zaczyna się nudzić. Program reaguje na sygnały przekazywane nieświadomie przez osobę, która się uczy. Gdy wykryje znudzenie, zaczyna różnicować prędkość przekazywania wiedzy i jej zawartość. W przyszłości będzie w stanie pobrać przez Sieć inny, bardziej zróżnicowany materiał. System ma być stosowany przede wszystkim w krajach rozwijających się, gdzie są problemy z dotarciem do wszystkich potencjalnych uczniów. W samych Chinach, jak informuje Vic Callaghan z Essex University, brakuje około 300 uniwersytetów. System zdalnego nauczania pozwoliłby dotrzeć z wiedzą do mieszkańców odległych prowincji. Osoba, która korzysta z systemu wykrywającego znudzenie, musi nosić specjalny pierścień składający się z sensorów monitorujących ciśnienie krwi, akcję serca i potliwość skóry. Dane są przekazywane do komputera za pomocą złącza Bluetooth. System potrafi też ocenić, które z partii przerabianego materiału są trudniejsze czy bardziej stresujące dla studenta i wymagają powtórzenia.
×
×
  • Dodaj nową pozycję...