Znajdź zawartość
Wyświetlanie wyników dla tagów 'tetraneutron' .
Znaleziono 1 wynik
-
Fizycy zgadzają się co do tego, że nie istnieje cząstka złożona z samych protonów. Jednak od ponad 50 lat szukają cząstki składającej się z więcej niż 2 neutronów. Naukowcy z Uniwersytetu Technicznego w Monachium poinformowali właśnie, że przeprowadzone przez nich eksperymenty wykazały na możliwość istnienia tetraneutronu, hipotetycznej cząstki złożonej z czterech neutronów. I nie są pierwszymi, którzy na istnienie takiej cząstki wskazują. Już 20 lat temu francuscy naukowcy opublikowali wyniki swoich eksperymentów, a wśród nich sygnał, który zinterpretowali jako pojawienie się długo poszukiwanego tetraneutronu. Później jednak inne grupy badawcze wykazały, że metodologia Francuzów nie mogła dowieść istnienia tetraneutronów. W 2016 roku Japończycy z RIKEN próbowali uzyskać tetraneutron bombartując hel-4 strumieniem helu-8. W wyniku tych badań stwierdzili, że tetraneutron nie istnieje w stanie związanym, a tworzące go neutrony bardzo szybko rozpierzchają się. Rok później fizycy z USA i Francji stworzyli teoretyczny model tetraneutronu, z którego wynika, że jeśli taka cząstka w ogóle istnieje, to bardzo szybko się rozpada. Nie wiemy więc, czy mogą istnieć tetraneutrony, w których dochodzi do oddziaływań pomiędzy ich poszczególnymi elementami. Jeśli jednak tetraneutrony istnieją, może to oznaczać, że fizycy muszą przemyśleć koncepcję oddziaływań silnych. To jedne z czterech oddziaływań podstawowych. Oddziaływania silne to ta siła, która trzyma wszystko razem. Atomy cięższe od wodoru nie mogłyby bez niej istnieć, mówi doktor Thomas Faestermann, który stał na czele grupy badawczej z Monachium. Niemcy przeprowadzili badania, w ramach których lit-7 bombardowali strumieniem jąder atomowych litu-7. Uzyskane w ich wyniku pomiary odpowiadają sygnałowi węgla-10 oraz tetraneutronowi o energii wiązania wynoszącej 0,42 MeV (+/- 0,16 MeV). Wynika z nich również, że tetraneutron powinien być tak stabilny jak samodzielny neutron, a czas jego półrozpadu powinien wynieść 450 sekund. Naszym zdaniem to jedyne zgodne z fizyką wyjaśnienie naszych pomiarów, mówi doktor Faestermann. Pewność pomiaru wynosi ponad 99,7%. Jednak... to za zbyt mało. Pewność statystyczna dla tej wartości to 3σ. Tymczasem w fizyce istnienie cząstki uznaje się za udowodnione, jeśli pewność statystyczna wynosi co najmniej 5σ. Ten poziom oznacza, że ryzyko, iż sygnał jest fałszywy, wynosi 1:3 500 000. Dlatego też naukowcy z Monachium z niecierpliwością czekają, by inny zespół niezależnie potwierdził ich spostrzeżenia. Wyniki badań zostały opublikowane w Physical Letters B. « powrót do artykułu